

#### Intelligent Payload Module Update

Dan Mandl HyspIRI Symposium Onboard Processing and Efficient Data Product Distribution Session June 3, 2015

#### Original HyspIRI Low Latency Data Flow Operations Concept (Intelligent Payload Module)



#### **Generalizing Revised IPM Definition**

- Intelligent Payload Module (IPM) Adapter for SensorWeb for high speed sensor data which is a combination of flight hardware and flight software that provides data subsets and/or higher level data products in near real time or realtime
- SensorWeb a set of sensors (land, marine, air, space) and processing which interoperate in a (semi) automated collaborative manner for scientific investigation, disaster management, resource management, and environmental intelligence".
  - -More information at: <u>http://sensorweb.nasa.gov</u>

#### Key Intelligent Payload Module (IPM) Functionality

- Secondary onboard science data processor
- High performance onboard processing (radiation hardened/tolerant) that can handle 930 Mbps input instrument data rate
  - Multicore processors
  - Field Programmable Gate Array (FPGA)
- Rapid access to real time subsets of sensor data for low latency users
- Rapid access to real time or near real time science data products for low latency users
- Rapid customization and integration of onboard algorithms
- Utilize industry standard formats;
- Minimize mass, volume, and power;
- Provide user extensible image processing toolkit (WCPS);
- Support a heterogeneous series of orbital, sub-orbital and *in situ* platforms via SensorWeb coordination.

## IPM as an Evolving Platform Integrating HW and SW Components

• IPM is a platform which integrates an evolving set of hardware and



#### **Broad Range of Supported Platforms**



#### **Basic SensorWeb Architecture**



#### **GSFC SensorWeb Components (Ground)**

| SensorWeb Toolkit Subsystem                 | Туре     | NTR           | How long in operation | TRL | Developed<br>Under | Note                                          |
|---------------------------------------------|----------|---------------|-----------------------|-----|--------------------|-----------------------------------------------|
| SensorWeb Reference Architecture            | Arch     | GSC-5025286   | 7 years +             | 9   | AIST-05            | Active on EO-1                                |
| Campaign Manager (GeoBPMS)                  | WfCS     | GSC-16267-1   | 5 years               | 9   | AIST-05            | Active on EO-1                                |
| Campaign Manager Client                     | WfCS     | GSC-5027514   | 2 years               | 7   | AIST-05            | Not used                                      |
| Identity Management Services                | Security | GSC-16268-1   | 5 years               | 9   | AIST-05            | Active on EO-1                                |
| EO-1 SPS 0.3 (GSFC)                         | SPS      | GSC-16271-1   | 5 years               | 9   | AIST-05            | Active on EO-1                                |
| EO-1 SOS                                    | SOS      | GSC-16272-1   | 5 years               | 7   | AIST-05            | Active on EO-1                                |
| OGC Publish/Subscribe Basic                 | WNS      | GSC-16270-1   | 5 years               | 9   | AIST-05            | Active on EO-1                                |
| WCPS                                        | WCPS     | GSC – 16273-1 | 3 years               | 9   | AIST-08            | Active on EO-1                                |
| Weka to WCPS Translator                     | WCPS     | GSC-16274-1   | 3 years               | 7   | AIST-08            | Not used                                      |
| Flood Dashboard                             | DADM     | GSC-16275-1   | 3 years               | 9   | EO-1               | Active Namibia,<br>Central America,<br>others |
| GeoSocial API                               | WfCS     | GSC-17162-1   | 0 years               | 6   | AIST-QRS11         | Namibia, Central<br>America, others           |
| Flood Vectorization Topojson                | WCPS     | GSC-17169-1   | 0 years               | 6   | TBS                | Demo mode                                     |
| Geo-Registration of Multi-Source Image Data | WCPS     | GSC-16862-1   | 0 Years               | 6   | TBS                | Demo mode                                     |
|                                             |          |               |                       |     |                    |                                               |

Arch- Architecture WfCS – Workflow Chaining Service SPS – Sensor Planning Service WCPS – Web Coverage Processing Service WNS – Web Notification Service DADM – Data Aggregator and Display Mashup

### JPL SensorWeb Components (Ground)

| SensorWeb Toolkit Subsystem                                               | Туре  | NTR       | How long in operation | TRL | Developed<br>Under | Note           |
|---------------------------------------------------------------------------|-------|-----------|-----------------------|-----|--------------------|----------------|
| Intelligent Payload Module                                                | WfCS  | JPL-45445 | 6 years               | 9   |                    | Active on EO-1 |
|                                                                           | WfCS  | JPL-48148 | 6 years +             | 9   |                    | Active on EO-1 |
| MODIS-based Flood Detection, Tracking and Response                        | WfCS  | JPL-48149 | 4 years               | 9   |                    | Active         |
| Change based satellite monitoring using broad coverage targetable sensors | WfCS* | JPL-48147 | 7 years               | 9   |                    | Active on EO-1 |
| EO-1 SPS 2.0                                                              | SPS   | JPL-48142 | 5 years +             | 9   |                    | Active on EO-1 |
| WPS Software Framework                                                    | WPS   | JPL-45998 | 6 years               | 9   |                    | Active on EO-1 |
| Autonomous Hyperspectral Data<br>Processing/Dissemination                 | WfCS* | JPL-48123 | 7 years               | 9   |                    | Active on EO-1 |

Arch- Architecture WfCS – Workflow Chaining Service SPS – Sensor Planning Service WNS – Web Notification Service WCPS – Web Coverage Processing Service DADM – Data Aggregator and Display Mashup

\* - Noncompliant with OGC Standards

# IPM SensorWeb Internal SW Components (Onboard)

| SensorWeb Toolkit Subsystem             | Туре   | NTR         | How long in operation | TRL | Developed<br>Under | Note              |
|-----------------------------------------|--------|-------------|-----------------------|-----|--------------------|-------------------|
| Intelligent Payload Module              | WfCS   | GSC-16867-1 | Assorted              |     | AIST-11            |                   |
| - cFE command in integrated into IPM    | -Til   |             | 6 months              | 7   |                    | Active Bus helo   |
| - cFE telemetry out integrated into IPM | -Til   |             | 6 months              | 7   |                    | Active Bus helo   |
| - cFE CFDP integrated into IPM          | -Til   |             | 6 months              | 7   |                    | Active Bus helo   |
| - WCPS integrated into IPM              | -Til   |             | 6 months              | 7   |                    | Active Bus help   |
| - GCAP single processor                 | -Til   |             | 6 months              | 6   |                    | Active Bus helo   |
| - GCAP parallel processed on multicore  | - Til  |             | 6 months              | 6   |                    | Active on testbed |
| - FLAASH Atmospheric Corr, one proc     | - Til  |             | 6 months              | 5   |                    | Active on testbed |
| - FLAASH Atmospheric Corr, parallel     | - Til  |             | 6 months              | 4   |                    | Active on testbed |
| - Spectral Angle Mapper                 | - Til  |             | 6 months              | 6   |                    | Active Bus helo   |
| - Instrument data ingest                | - FPGA |             |                       | 3   |                    | Helo/cubesat      |
| - FLAASH AC                             | - FPGA |             |                       | 3   |                    | Helo/cubesat      |
| - GCAP                                  | - FPGA |             |                       | 3   |                    | Helo/cubesat      |

Arch- ArchitectureDADM – IWfCS – Workflow Chaining Service• - NoncSPS – Sensor Planning ServiceTil – on TWNS – Web Notification ServiceGCAP – CWCPS – Web Coverage Processing ServiceGCAP – C

DADM – Data Aggregator and Display Mashup

- Noncompliant with OGC Standards

Til - on Tilera multicore

GCAP – Geocorrection for Airborne Platforms

#### **Revised Mission Concept for ISS or Smallsat**

PowerPC's and FPGA. Previous versions of SpaceCube on ISS now, SpaceCube 2.0 on ISS FY16 for DoD Imaging Spectrometer Data Via LVDS Output 1.2 Gbps data rate via 100 1200 cross track pixels Mbps • 13 bits per pixel Wifi to 306 Spectral Bands ISS Perform Level 1 Radiometric 240 frames per second Correction Hyperion / OLI SWIR2 Band Perform convolution of up to 48 bands synthesized into 1 band Comparison Need 8 Landsat bands In-Band Band-Average RSR generated 48 Bands have weighting factor 1.2 and are added to form one 1 response Note: Validation Landsat band 12 bit value 0.8 0.6 embedded in 16 bit word approach for generation relative I 0.4 Each of the Landsat bands can of Landsat bands and 0.2 use some of the same 48 bands contents of convolution as the other Landsat bands look up table to be -0.2 Majority of processing in FPGA determined by science wavelength [nm]

team.

SpaceCube 2.0 Version of IPM – Combined dual

## 2<sup>nd</sup> Revised Mission Concept for ISS or Smallsat



### **Bench Functionality Checklist**

| Date    | Description                                                          | Multi<br>core | FPGA | LO | LIR | AC | L1G | WCPS | LandS<br>Convol | cFE/<br>CFS | WCPS | Free<br>wave<br>10 | Comment                                                     |
|---------|----------------------------------------------------------------------|---------------|------|----|-----|----|-----|------|-----------------|-------------|------|--------------------|-------------------------------------------------------------|
| 6/XX/12 | IPM Testbed HW<br>Integrated with cFE,<br>Freewave IO Wifi           | ۷             |      |    |     |    |     |      |                 | ۷           |      |                    | Tilera<br>Tile64 Hello<br>World                             |
| 8/XX/12 | Spectral Unmixing<br>Parallel Bench Test                             |               |      |    |     |    |     | ۷    |                 |             |      |                    | Speed test<br>with<br>parallelized<br>algorithm             |
| 9/XX/12 | GCAP Parallelized Test                                               |               |      |    |     |    | ۷   |      |                 |             |      |                    | Speed<br>depending<br>on how<br>many Til<br>cores used      |
| 8/14/13 | B23 Rooftop test of<br>IPM with ChaiV640                             | ۷             |      | ۷  | ۷   |    |     |      |                 |             | ۷    |                    | Imaged<br>GSFC with<br>IPM system                           |
| 8/23/13 | SpaceCube 1.5 test<br>with AC                                        | ۷             | ۷    |    |     | ۷  |     |      |                 |             |      |                    | Ran FLAASH<br>on Virtex5<br>on<br>PowerPC                   |
| 8/XX/14 | Portion of FLAASH AC<br>on FPGA of 2C702<br>performance<br>benchmark |               | ۷    |    |     |    |     |      |                 |             |      |                    | Fast Fourier<br>Transfer<br>Installed on<br>FPGA of<br>Zyng |



#### Flight Functionality Checklist

| Date     | Description                                             | Multi<br>core | FPGA | LO | LIR | AC | L1G | WCPS | LandS<br>Convol | Rad<br>Tol | Small<br>Pkge | No<br>EMI | Low<br>Power | Comment                                       |
|----------|---------------------------------------------------------|---------------|------|----|-----|----|-----|------|-----------------|------------|---------------|-----------|--------------|-----------------------------------------------|
|          | IPMv1<br>Complete/ChaiV640<br>Box Complete              |               |      |    |     |    |     |      |                 |            |               |           |              |                                               |
| 03/23/13 | IPM-AMS Flight Ogden                                    | ۷             |      | ۷  | ۷   |    | ۷   | ۷    |                 |            |               |           |              |                                               |
| 03/28/13 | IPM-GliHT Langley                                       | ۷             |      | ۷  | V   |    | ۷   |      |                 |            |               |           |              |                                               |
| 10/15/13 | IPM Flight GliHT -<br>Langley                           | ۷             |      | ۷  | ۷   |    | ۷   |      |                 |            |               |           |              |                                               |
| 7/7/14   | Approval for Bussmann<br>Helo Flights                   |               |      |    |     |    |     |      |                 |            |               |           |              |                                               |
| 7/16/14  | IPM-Chai Flight 1<br>Bussmann Helicopter                | ۷             |      | ۷  | ۷   |    | ۷   | ۷    |                 |            |               | ۷         |              | No image,<br>EMI                              |
| 7/23/14  | IPM-Chai Flight 2<br>Bussmann Helicopter                | ۷             |      | ۷  | ۷   |    | ۷   | ۷    |                 |            |               | ۷         |              |                                               |
| 9/19/14  | IPM-Chai Flight 3<br>Bussmann Helicopter                | ۷             |      | ۷  | ۷   |    | ۷   | ۷    |                 |            |               | ۷         |              | Image, no<br>EMI, lost<br>frames              |
| 1/20/15  | IPM-Chai Flight 4 with<br>Zyng based processor          | ۷             |      | ۷  | ۷   |    | ۷   | ۷    |                 |            |               | ۷         |              | Prove no<br>lost frames                       |
| 4/13/15  | IPM-Chai Flight 5 with<br>Zyng based processor          | ۷             | ۷    | ۷  | ۷   |    |     | ۷    |                 |            |               | ۷         |              | 1 <sup>st</sup> FPGA<br>use                   |
| 5/5/15   | IPM Chai Flight 1 on<br>Cessna 206H Langley to<br>PEARL | ۷             | ۷    | ۷  | ۷   |    | ۷   | ۷    |                 |            |               |           |              | 1 <sup>st</sup> Langley<br>Flight to<br>PEARL |

 $\sqrt{\mathbf{Passed}}$   $\sqrt{\mathbf{Delayed}}$  to Future Flights  $\sqrt{\mathbf{Planned}}$ 

#### Flight Functionality Checklist

| Date    | Description                                                             | Multi<br>core | FPGA | LO | L1R | AC | L1G | WCPS | LandS<br>Convol | Rad<br>Tol | Small<br>Pkge | No<br>EMI | Low<br>Power | Comment                                          |
|---------|-------------------------------------------------------------------------|---------------|------|----|-----|----|-----|------|-----------------|------------|---------------|-----------|--------------|--------------------------------------------------|
| 5/29/15 | IPM Chai Flight 2 on<br>Cessna 206H                                     | ٧             | ۷    | ۷  | ۷   | ۷  | ٧   | ٧    |                 |            |               | ۷         |              | Langley to<br>PEARL                              |
| 6/20/15 | IPM-Chai Bussmann<br>Flight 2 to PEARL                                  | ٧             | ٧    | ۷  | ٧   | ۷  | ٧   | ٧    |                 |            |               | ۷         |              | PEARL<br>Flight                                  |
| 7/15/15 | IPM-Chai Flight 7 with<br>Zyng based processor                          | ٧             | ۷    | ۷  | ۷   | ٧  | ٧   | ٧    |                 |            |               | ۷         | ۷            | More FPGA<br>stuff-<br>Manassas                  |
| 7/15/15 | Mini UAV Flight<br>Barcelona (Enric)                                    | ٧             |      |    |     |    |     |      |                 |            | ٧             | ۷         | ٧            | TBD                                              |
| 8/10/15 | IPM-Chai Bussmann<br>flight 8 to PEARL                                  | ٧             | ٧    | ۷  | ٧   | ۷  | ٧   | ٧    |                 |            |               | ۷         |              | Algae<br>detection                               |
| 8/20/15 | IPM-Chai Flight 3 with<br>Zyng based processor<br>from Langley to PEARL | ٧             | ٧    | ۷  | ٧   | ٧  | ٧   | ٧    |                 | ٧          | ٧             | ۷         | ٧            | PEARL Leaf<br>on – some<br>processing<br>on FPGA |
|         |                                                                         |               |      |    |     |    |     |      |                 |            |               |           |              |                                                  |

#### $\sqrt{1}$ Passed $\sqrt{1}$ Delayed to Next Flight $\sqrt{1}$ Planned

#### **IPM Enabled Hexacopter Flights**



IPM enables image aided navigation depending on realtime measurement

#### **CSP in ISS and Cubesat**





- CSP/SpaceCube Tech Demo ISIM (Space Station)
  - ✓ 2 CSP's, SpaceCube 1.0, 1.5, 2.0
  - ✓ Delivered to DoD early FY15 and launched early FY16
  - ✓ Gary Crum/587
- Compact Radiation BEIt Explorer (CeREs) is part of NASA's Low-Cost Access to Space program
  - ✓ 3U Cubesat
  - ✓ 1 CSP
  - ✓ Delivery to GSFC early 2015, Launch 2016

#### ZC702 – Zynq (ARM/FPGA Processor) Proxy for COTS+RH+FTC CHREC Space Processor (CSP)

#### COTS

- Zynq-7020 hybrid SoC
  - -Dual ARM A9/NEON cores
  - -Artix-7 FPGA fabric + hard IP
- DDR3 memory

#### RadHard

- NAND flash
- Power circuit
- Reset circuit
- Watchdog unit



#### **FTC = Fault-Tolerant Computing**

- Variety of mechanisms
  - External watchdog unit to monitor Zynq health and reset as needed
  - RSA-authenticated bootstrap (primary, secondary) on NAND flash
  - ECC memory controller for DDR3 within Zynq
  - ADDAM middleware with message, health, and job services
  - FPGA configuration scrubber with multiple modes
  - Internal watchdogs within Zynq to monitor behavior
  - Optional hardware, information, network, software, and time redundancy

#### Publisher/Consumer/GeoSocial API Architecture



#### **Next Generation IPM Multicore/FPGA Integrated Architecture**

\* AMM - is metadata that provides the compiler with information about the target resources. Eg processing throughput, power, communication throughput for each computer architecture. For FPGAs, there is probably a generic version used when going through HLS and also any predefined HDL cores



### **IPM Enables Hyperspectral Cubesat Concept**

**TDRSS** 



Launched from ISS via

CSLI at 400 km altitude, 51.6 deg inclination

1 kbps Multiple Access On Demand or 12 kbps Single Access S-band CCSDS Command/Telemetry/Locate





1 kbps Multiple Access On Demand or 12 kbps Single Access S-band CCSDS Command/Telemetry/Locate



Ground Station



**Onboard Processing** 

2 Mbps S-Band instrument Data & Data Products

EO-1 MOC at GSFC

White Sands Ground Station

**Closed IONet** 



**Open IONet** 

#### FFT Benchmark Tests with Various CPU Processors and FPGA

| Processor | Cores | FFTW 1<br>band 128<br>x 256 time<br>(Msec) | Clock rate<br>(Mhz) | Power<br>Consumption<br>(watts) | Program<br>mability |
|-----------|-------|--------------------------------------------|---------------------|---------------------------------|---------------------|
| TileGX    | 1     | 21.3                                       |                     |                                 | +                   |
| TileGX    | 4     | 10.0                                       |                     |                                 | +                   |
| Maestro   | 1     | 187                                        | 200                 | 14 watts                        | +                   |
| Maestro   | 8     | 55                                         | 200                 | 14 watts                        | +                   |
| ZynqARM   | 1     | 8.7                                        | 667                 | 3 watts                         | 0                   |
| ZynqARM   | 2     | 6.9                                        | 667                 | 3 watts                         | 0                   |
| XeonPhi   | 1     | 9.0                                        |                     |                                 | +                   |
| XeonPhi   | 171   | 0.221                                      |                     | 225 watts                       | +                   |
| FPGA      | NA    | 1.5                                        | 100                 | <3 watts                        | -                   |

## **Processor Comparison**

| Processor         | MIPS | Power | MIPS/W |  |
|-------------------|------|-------|--------|--|
| MIL-STD-1750A     | 3    | 15W   | 0.2    |  |
| RAD6000           | 35   | 15W   | 2.33   |  |
| RAD750            | 300  | 15W   | 20     |  |
| LEON 3FT          | 75   | 5W    | 15     |  |
| LEON3FT Dual-Core | 250  | 10W   | 25     |  |
| BRE440 (PPC)      | 230  | 5W    | 46     |  |
| Maxwell SCS750    | 1200 | 25W   | 48     |  |
| SpaceCube 1.0     | 3000 | 7.5W  | 400    |  |
| SpaceCube 2.0     | 6000 | 10W   | 600    |  |
| SpaceCube Mini    | 3000 | 5W    | 600    |  |

