

Image Co-Registration For Onboard Low Latency Products

Pat Cappelaere

Vuong Ly Dan Mandl Jacqueline LeMoigne

Goals

- Co-register hyperspectral/multispectral bands onboard within a few seconds
- Proof-of-Concept using EO-1 ALI L1GST
- 9 Bands @30m resolution 16.4MB TIF Int16 ~(2231x3671)
- Rationale: Current EO-1 L1GST Data Product Offset Not Good for Low Latency Products

B8

C48

EO1A1760722013027110KF_1GST

C48

C48

Mohemb

C48

Previous Workflow

- For One EO-1 ALI L1GST Scene:
 - > Find/Make [30-150] Chips from Landsat GLS2000 (Landsat Band 7-- 2.1 to 2.3 microns)
 - Subset Matching Tile(s) from EO-1 ALI Scene (EO-1 Band 8 --- 1.2 to 1.3 microns)
 - ✓ Issue was whether we are detecting the same features using these bands
 - > Apply Filter, Linear Stretch and Convert to Byte
 - Apply co-registration (ureg) -> Tx,Ty [,Theta,Scale] for each tile
 - Using Median RST to Determine Average Transformation
 - Apply Transformation To Band File(s)
 - Visual Assessment

Current Workflow

- Make 1 Best Chip from Best Available Landsat L8 scene from the Amazon Cloud (latest, least cloudy one) (Landsat 8 Band 7 --- 2.107 to 2.294 microns)
- Subset Matching Tile from EO-1 ALI Scene (EO-1 Band 10-- 2.08 to 2.35 microns)
- Apply co-registration (ureg) -> Tx, Ty [do not use Theta, Scale]
 - > Ignoring theta because theta is small, would normally be a expensive transform to apply
 - Ignoring scale because it is always one
 - > Translation is easy, only change origin in header thus is can be very fast
- Generate Automated Metrics (to assess the results of the transformation)
- Ported code to various flight testbeds

Timing Metrics

• Assumptions:

•

- > Only timing the coregistration portion, not acquisition of data
- > EO-1 scene(16.4 Mbytes per band) with loaded chip
- Results to subset an EO-1 tile and determine transformation parameters
 - > 0.38 s (Mac OSX)
 - > 3.44 s (Flight Testbed 667MHz ARM ZC702 (1 Core)
 - > 6.78 s (Flight Testbed 1GHz TILE-Gx36 (1 Core)
 - > 33.18 s (Flight Testbed 864MHz TILEPro64 (1 Core)
 - Time to Apply RST Transformation to One TIF Band (x 9 bands)
 - > < 0.01s

Quantifying Registration Errors

- Problem: How To Automatically Quantify The Mis-registration Before and After Registration?
- Root Mean Square Error (RMSE) (Coulter & Stow 2012)
 - > RMSE = $\sqrt{(\sum_{1}^{N} ((x_1-x_2)^2 + (y_1-y_2)^2)/N))}$
 - > Using Automatically Detected Top 10 Features between Chip and Matching Tile
 - How: using SURF (Speeded-Up Robust Features), Brute Force Matcher, and error catching using RANSAC
 - Compute RMSE on Matched Features
- Use Several Algorithms and Average Results (WORK IN PROGRESS)

Chip Determination

Rationale:

•

- Avoid Onboard Database (210GB)
- Avoid Real-time Search for Chip(s)
- Use Direct Retrieval of Chip if Stored Onboard or Load it With Command Load With Option to store or not

QuadKey Tiles (similar algorithm as used by Bing/Google)

- Used to identify chip subset for the specified Landsat 8 scene and the matching EO-1 scene
- Square Tiles
- Every Target Belongs to a QuadTile
- QuadTile Easy To Find (Algorithm)
- QuadTiles have QuadKeys (aka Name)
- Quad-Neighbors Easy To Find

Example: Target: latitude, longitude [8.01,98.56] -> Quadkey12 Bounding box ="132221300201" [7.88,98.44,8.06,98.66]

(0,0)	(1,0)	(2,0)	(3,0)	(4,0)	(5,0)	(6,0)	(7,0)
(0,1)	(1.1)	(2,1)	(3,1)	(4,1)	(5,1)	(6,1)	(7,1)
(0,2)	(1,2)	(2,2)	(3,2)	(4,2)	(5,2)	(6,2)	(7,2)
(0,3)	(1,3)	(2,3)	(3,3)	(4,3)	(5,3)	(6,3)	(7,3)
(0,4)	(1,4)	(2,4)	(3,4)	(4,4)	(5,4)	(6,4)	(7,4)
(0,5)	(1,5)	(2,5)	(3,5)	(4,5)	(5,5)	(6,5)	(7,5)
(0,6)	(1,6)	(2,6)	(3,6)	(4,6)	(5,6)	(6,6)	(7,6)
(0,7)	(1,7)	(2,7)	(3,7)	(4,7)	(5,7)	(6,7)	(7,7)

Quad-Tile Size Trade

Hash len	Size km	Res m/px	GLS Pixels
11	19.4	75.7	648x648
12	9.7	37.85	324x324
13	4.8	18.9	162x162

Co-registration Namibia Example

Flood Map Workflow

- EO-1 Scene from USGS (10 bands 92MB compressed)
 - Generate Water Surface Extent
 - Apply HAND mask
 - Apply Cloud mask
 - Generate Final Raster
 - Generate Compressed Topojson Vector Product (24KB)
 - ✓ Aka low latency product
- Display on Browser using geojson.io

USGS EO-1 L1GST : EO1A1760722013027110KF_1GST

USGS EO-1 L1T : E01A1760722013027110KF_1T

L1GST After Co-Registration (one L8 Tile)

Example of Hyperion L1G Misregistration on Google Earth

ALI L1GST Misregistration on Google Earth

Landsat 8 Tile

Hyperion Coregistration with 1 Landsat 8 Tile Tx: -2.743618 Ty -7.184056

ALI L1G Coregistered (Same Scene)

Tx: -13.772506 Ty: -0.815789

Possible Future Work

- Finish/Validate Automated Metrics
- Improve Tile Selection Algorithm
 - Shannon Entropy (Image Histogram) to use Wavelet Entropy
- Automate EO-1 Processing Flow On Matsu Cloud
- Port to CHREC Space Processor (Xilinx MicroZed)

pat@cappelaere.com

(410) 340-4868