

sUAS for Mapping and Monitoring Smallholder Farms in Tanzania

Jyothy Nagol, Jan Dempewolf, and Sixbert Maurice (University of Maryland College Park)

AgriSense Africa

- Part of an international initiative to explore ways to use remote sensing technology to improve agricultural practices in Sub-Saharan Africa and South Asia.
- □ The project aims to use Remote Sensing Technologies to:
 - □ Improve agricultural monitoring
 - □ Improve food security forecasting

Rationale for UAVs

□ UAVs are being explored to

- □ Linking the Ground and Space-borne data
- □ Use in lieu of remote sensing data

Study Area

- □ UAV data collected at Tanzanian sites only
- □ Data collection started in March (pilot stage)
- ❑ Monthly repeat coverage of 1km2 area
- □ Sites have been chosen to represent the agricultural productivity gradient in Tanzania
 - □ Same: Low
 - □ Kilosa: Medium
 - □ Njombe: High
- Smallholder, subsistence farming
- ❑ Crop boundaries change every season
- □ mixed and Intercropping is common

sUAS being Deployed

- □ Fixed Wing: senseFly eBee
 - □ Endurance: ~25 to 35 minutes
 - □ Weight: ~700 grams
 - Sensors
 - □ Modified canon s110 cameras
 - Custom Multispectral camera
- Multi-rotor: Geo-Konzept x8000
 Endurance: ~20 minutes
 - □ Sensors
 - □ 5 channel Multispectral camera
 - □ RGB camera (Sony Nex 7)

Sensors for senseFly eBee

RGB camera

NIR camera

MultiSpec 4c

(With onboard calibration data)

Sensors for X-8000

TetraCam 6-Channel Mini MCA

- Spectral Bands
 - □ Band 1: 550 nm (Green)
 - □ Band 2: 680 nm (Red)
 - □ Band 3: 710 nm (Red-Edge)
 - □ Band 4: 740 nm (Red-Edge)
 - □ Band 5: 800 nm (NIR)
 - □ Band 6: Incident Light Sensor (ILS)
- On-board calibration data

□ Results used to calibrate and validate space-borne crop metric estimation algorithms.

Challenges

Equipment problems

DeBee multispectral sensor overheats causing autopilot malfunction in sunny Tanzanian afternoon

Bird hits, it attracts attaks from terretorial birds often (Neusence)

Low Endurance

 $\hfill\square$ 15 to 30 minutes depending on the wind speeds and camera choice

Needs three flight missions to cover a 1x1km area

BRDF

□ Hotspot and specular reflectance is a serious problem when flying close to noon or in windy conditions

Difficulty creating stable mosaics

Clouds

Change in light conditions caused cloud shadows makes creating radiometrically stable Mosaics quite difficult

Low internet bandwidth

Difficult to transfer data from Tanzania to UMD

Lessons Learned

- Building capacity for sUAS operation at local institutions in Tanzania was fairly easy
- However good results still need oversight by a remote sensing expert
 - Evaluate intermediate results in the field
 - Fix problems with the UAV operation protocol and schedule
 - Manage data
- COTS systems, however expensive, still need through testing
 - □ Need for a test site near UMD
- UMD UAS test site

UMD UAS test site

- □ Supports every aspect of UAS research
 - □ Collaborative approach
 - □ Airspace integration (COA)
 - Airworthiness review
 - Payload Integration and pilots
 - Range of UAVs already available for use.
 - □ Fixed wing systems
 - □ Endurance range: upto 5 hours
 - □ Payload capacitie: upto 12 lbs
 - □ Multi-rotor systems
 - □ Endurance range: upto 30 min
 - Payload capacitie: upto 3 lbs

