A Demonstration of Real time, Model driven Reflectance Retrieval for AVIRIS-NG Imagery

Brian D. Bue*, David R. Thompson*, Michael L. Eastwood*, Didier Keymeulen*, Bo-Cai Gao+, Charles M. Sarture*, Alan S. Mazer*, Huy H. Luong*, Robert O. Green*

* Jet Propulsion Laboratory, California Institute of Technology + U.S. Naval Research Laboratory

2014 HyspIRI Science and Applications Workshop

Goal: fast and accurate model-based atmospheric correction

• To retrieve surface reflectance: necessary to correct for atmospheric absorption and scattering effects

- Model-based (ATREM [Gao et al., 1993], FLAASH [Cooley et al., 2002])
 - Accurate Computationally expensive
- Empirical (QUAC [Bernstein et al., 2004], ELM [Conel et al., 1985])
 - Fast Strong assumptions / Require ground spectra (ELM)
- This work: demonstrates model-based atmospheric correction at sensor acquisition rates of 500Mb/s

Goal: fast and accurate model-based atmospheric correction

 To retrieve surface reflectance: necessary to correct for atmospheric absorption and scattering effects

- Model-based (ATREM [Gao et al., 1993], FLAASH [Cooley et al., 2002])
- Empirical (QUAC [Bernstein et al., 2004], ELM [Conel et al., 1985])
- This work: demonstrates model-based atmospheric correction at sensor acquisition rates of 500Mb/s

Motivation: Onboard Analysis

- Modern spectrometers generate data volumes approaching 1Gb/s
- Storage / communications bandwidth limits duty cycles for UAV or exploration applications
- Reflectance imagery available at the sensor enables autonomous applications:
 - Smart downlink prioritization
 - Rapid response to science targets
 - Summary product generation / ROI compression

$$\begin{array}{l} {\rm TOA} \\ {\rm reflectance} \ \rho = \frac{\pi L}{F\cos(\theta)} \\ {\rm Solar \ flux} \end{array} \end{array}$$

[Gao and Goetz., 1990]

 $\{T_u, T_d, T_g\} = \{upward, downward, gaseous\} transmittance$ <math>s = spherical albedo

[Gao and Goetz., 1990]

Our approach: precompute LUT of scattering and transmission terms

Real time Reflectance Retrieval for AVIRIS-NG Imagery

Scattering and transmission terms depend on:

- Imaging geometry: aircraft altitude + solar zenith angle
- *Atmospheric state*: surface pressure elevation + H₂O absorption path Precompute 4 Dimensional LUT (designed for operating range of Twin Otter):

- Aircraft altitude: {.25, .5, ..., 5}km
- Solar zenith angle: {0, 4, ..., 88}deg
- Surface pressure elevation: {0, 1, ..., 4}km
- H₂O path: {0, ..., 5}cm (60 paths, log spacing)

Scattering terms: 6S code [Vermote et al., 1997]

Transmission terms:

- Absorption cross-sections from HITRAN2012 database [Rothman et al., 2013]
- Coefficients from Oxford Reference Forward Model [Dudhia, 2012]

LUT generation time: ~6k CPU hours on JPL supercomputer cluster

AVIRIS Next Generation (AVIRIS-NG) + Interface

"Designed to exceed AVIRIS-Classic in the spectral, spatial, radiometric and uniformity domains." http://airbornescience.jpl.nasa.gov/

- Resolution:
 - Spectral: 380-2500nm at 5nm
 - Spatial: 0.5m / pixel or finer
- Dedicated FPGA interface:
 - Handles high-speed Camera Link protocol (500Mb/s)
 - Associates frames with comounted GPS / INU position stream

Image credit: http://airbornescience.jpl.nasa.gov/instruments/avirisng

Architecture and Data Flow

Watchdog process (Python) monitors SSD for new imagery, activates atmospheric correction routine (C), displays reflectance spectra as they are generated

Architecture and Data Flow

Watchdog process (Python) monitors SSD for new imagery, activates atmospheric correction routine (C), displays reflectance spectra as they are generated

Demonstration on AVIRIS-NG Imagery

- Tested real time system onboard Twin Otter over two regions: San Joaquin Valley (SJV) and UC-Riverside (UCR)
- Successfully processed 31/31 flightlines at the sensor acquisition rate of 500Mb/s
- First demonstration of real time, modelbased atmospheric correction of hyperspectral imagery onboard an

aircraft

Above: real time system in action onboard the Twin Otter

Capture Time (UTC)	Location	Zenith	Altitude (m)	#Lines
11 June 2014 19:50:45	SJV	13.4	4186	39103
11 June 2014 20:01:36	SJV	13.3	4107	32259
11 June 2014 20:14:48	SJV	13.9	4179	24906
11 June 2014 20:21:57	SJV	14.4	4131	23407
11 June 2014 20:38:06	SJV	16.3	4657	33765
11 June 2014 20:46:31	SJV	17.3	4625	35751
11 June 2014 21:18:22	SJV	22.0	2577	42210
11 June 2014 21:29:13	SJV	23.9	2479	32604
11 June 2014 23:00:35	SJV	42.1	1620	16656
12 June 2014 19:57:14	UCR	10.9	2384	26778
12 June 2014 20:02:45	UCR	11.1	2378	17973
12 June 2014 20:06:43	UCR	11.4	2375	20700
12 June 2014 20:12:43	UCR	11.9	2363	12840
12 June 2014 20:16:48	UCR	12.3	2393	14091
12 June 2014 20:20:47	UCR	12.7	2320	17934
12 June 2014 20:29:43	UCR	13.9	1247	14043
12 June 2014 20:33:47	UCR	14.5	1257	13023
12 June 2014 20:37:30	UCR	15.0	1230	12727
12 June 2014 20:41:11	UCR	15.6	1260	11937
12 June 2014 20:44:38	UCR	16.2	1236	13489
12 June 2014 20:48:58	UCR	16.9	1251	15109
12 June 2014 20:54:35	UCR	17.8	1227	12612
12 June 2014 20:59:37	UCR	18.5	2376	33297
12 June 2014 21:11:54	UCR	20.6	2557	19576
12 June 2014 21:17:16	UCR	21.6	2531	17608
12 June 2014 21:21:59	UCR	22.5	2543	22644
12 June 2014 21:28:10	UCR	23.8	2552	9414
12 June 2014 21:31:42	UCR	24.4	2525	17169
12 June 2014 21:38:58	UCR	26.0	2046	20322
12 June 2014 21:53:42	UCR	28.5	2065	17034
12 June 2014 21:59:31	UCR	29.7	2018	16245

Validation Data and Algorithms

Validation data:

- Flightlines:
 - UCR (6/12/14, 20:16:48): urban area, orchards
 - SJV (6/11/14, 20:21:57): chaparral vegetation, bare terrain
- ASD field spectra of UCR area from summer 2013

Algorithm comparisons:

- QUAC [Bernstein et al, 2004]
 - Empirical approach: assumes linear model, estimates baseline + offset using in-scene pixels, CPUtime = minutes
 - Applied to TOA reflectances without filtering bright / sharp features
 - Exclude pixels where QUAC output outside [0,1] range (<1% of all pixels)
- AVIRIS-NG Standard Science Pipeline
 - ATREM-based ground processing pipeline, CPUtime = hours

UCR Flightline Comparisons: ASD Field Spectra, QUAC, AVIRIS-NG Standard

Real time Reflectance Retrieval for AVIRIS-NG Imagery

UCR Flightline: Per-band RMSE vs. AVIRIS-NG Standard

Real time Reflectance Retrieval for AVIRIS-NG Imagery

SJV Flightline Comparisons: QUAC, AVIRIS-NG Standard

Real time Reflectance Retrieval for AVIRIS-NG Imagery

UCR SMACC [Gruninger et al., 2004] Endmembers

Real time Reflectance Retrieval for AVIRIS-NG Imagery

H₂O Retrievals: Correlation with NDWI [Gao, 1996] CIBR vs. 3-Phase, NDVI>0.0

False-color Composite

Model-based Real time (CIBR) A

AVIRIS-NG Standard (3-Phase)

Correlation (H₂O retrieval, NDWI) Model-based: 0.72852 AVIRIS-NG Standard: 0.22520

Summary and Future Work

- We demonstrated model-based atmospheric correction at sensor acquisition rates of 500Mb/s
- Real time execution possible by shifting radiative transfer computations offline
- Successful in-flight runs on AVIRIS-NG platform
- Next steps:
 - Preparing TGRS paper: "Real time Reflectance Retrieval for AVIRIS-NG Imagery"
 - Real time orthorectification

Acknowledgments

- Sarah Lundeen, Scott Nolte and the AVIRIS-NG team
- Glenn Sellar, John Morgan, Mark Helmlinger and Erika Podest for collecting the UCR field spectra
- Research supported by JPL Lew Allen award #R.14.022.059, awarded to David Thompson, 2013.

References

- [Conel et al., 1985] Conel, J. E., and Alley, R. E. (1985), Lisbon Valley, Utah, uranium test site report, The Joint NASA/ Geosat Test Case Project (H. N. Paley, Ed.).
- [Cooley et al., 2002] T. Cooley, G. P. Anderson, G. W. Felde, M. L. Hoke, A. J. Ratkowski, J. H. Chetwynd, J. A. Gardner, S. M. Adler-Golden, M. W. Matthew, A. Berk, L. S. Bernstein, P. K. Acharya, D. Miller, and P. Lewis, "FLAASH, a MODTRAN4-based atmospheric correction algorithm, its application and validation," IGARSS, vol. 3, pp. 1414–1413, Jun. 2002.
- [Gao and Goetz, 1990] B.-C. Gao and A. F. H. Goetz, "Column atmospheric water vapor and vegetation liquid water retrievals from Airborne Imaging Spectrometer data," Journal of Geophysical Research: Atmospheres, vol. 95, no. D, pp. 3549–3564, Mar. 1990.
- [Gao, 1996] B.-C. Gao, "NDWI A normalized difference water index for remote sensing of vegetation liquid water from space," Remote Sensing of Environment, vol. 58, no. 3, pp. 257–266, Dec. 1996.
- [Bernstein et al., 2004] L. S. Bernstein, S. M. Adler-Golden, R. L. Sundberg, R. Y. Levine, T. C. Perkins, A. Berk, A. J. Ratkowski, and M. L. Hoke, "A new method for atmospheric correction and aerosol optical property retrieval for VIS-SWIR multi- and hyperspectral imaging sensors: QUAC (QUick atmospheric correction)," AVIRIS Workshop 2004, vol. 5, pp. 3549–3552, 2004.
- [Dudhia, 2012] A. Dudhia, "Oxford University Reference Forward Model (RFM)," Oxford University, 2012.
- [Gruninger et al., 2004] J. Gruninger, A. Ratkowski, and M. L. Hoke, "The sequential maximum angle convex cone (SMACC) endmember model (Proceedings Paper)," Proc. of SPIE, 2004.
- [Rothman et al., 2013] L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. C. Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J. M. Flaud, R. R. Gamache, J. J. Harrison, J. M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, V. G. Tyuterev, and G. Wagner, "The HITRAN2012 molecular spectroscopic database," Journal of Quantitative Spectroscopy and Radiative Transfer, vol. 130, no. c, pp. 4–50, Nov. 2013.
- [Vermote et al., 1997] E. F. Vermote, D. Tanre, J. L. Deuze, M. Herman, and J. J. Morcette, "Second Simulation of the

Per-band Mean/Std. Dev. of TOA Reflectances

- QUAC assumes std. dev. ~constant for all wavelengths
- RMSE greatest for bands where std. diverges (<600 & >2000nm)

UCR Flightline: Per-pixel RMSE vs. AVIRIS-NG Standard

Real time Reflectance Retrieval for AVIRIS-NG Imagery

H₂O Retrievals: Correlation with NDWI [Gao, 1996] CIBR vs. 3-Phase, NDVI>0.75

False-color Composite

Model-based Real time (CIBR)

AVIRIS-NG Standard (3-Phase)

Correlation (H₂O retrieval, NDWI) Model-based: 0.67026 AVIRIS-NG Standard: 0.07954