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JPL EVAPOTRANSPIRATION (PT-JPL)

Global estimates of the land—atmosphere water flux based on monthly AVHRR and
ISLSCP-II data, validated at 16 FLUXNET sites

JB Fisher, KP Tu, DD Baldocchi - Remote Sensing of Environment, 2008 - Elsevier

Numerous models of evapotranspiration have been published that range in data-driven

complexity, but global estimates require a model that does not depend on intensive field

measurements. The Priestley—Taylor model is relatively simple, and has proven to be ...

Cited by 164 Related articles All 11 versions Cite Save
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A
LE = R Priestley & Taylor (1972)
n

pot A+y

Fisher, J.B., et al., 2008:
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JPL MODIS R,

R, =(1-albedo)*SW,, + LW, - LW,

= We combined 11 variables from 6 different MODIS products daily over the
MODIS era to estimate the components of R..

Component of R,

MODIS products and method

Albedo

Incoming Shortwave
(SWy,)

Incoming Longwave
(LWy,)

Outgoing Longwave

Albedo from MCD43 (500 m, 8-day), land cover from MCD12 (500 m,
annual)

Cloud optical thickness, cloud top altitude, and solar zenith angle from
MODO06 (5 km, daily); aerosol optical thickness at 550 nm from
MODO04 (10 km, daily); Input MODIS data to a radiative transfer model
(Kobayashi et al., 2008)

Near surface air temperature and vapor pressure from MODO7 (5 km,
daily); estimate emissivity from vapor pressure and temperature

Land and emissivity from MOD11 (1 km, daily);
estimate broadband emissivity
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JPL MODIS R,

Validation at 126 sites across FLUXNET and SURFRAD.
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Multi-site evaluation of terrestrial evaporation models using
FLUXNET data

A. Ershadi®*, M.F. McCabe", J.P. Evans 9, N.W. Chaney¢, E.F. Wood®

2 School of Civil & Environmental Engineering, University of NSW, Sydney, NSW, Australia
® Water Desalination and Reuse Centre, King Abdullah University of Science and Technology (KAUST), Jeddah, Saudi Arabia
€ ARC Centre of Excellence for Climate Systems Science, University of NSW, Sydney, Australia

4 Climate Change Research Centre, University of NSW, Sydney, Australia

< Department of Civil and Princeton University, Princeton, NJ, USA

PT-JPL was the best performing
ET retrieval algorithm.

ARTICLE INFO ABSTRACT

Article history: We evaluated the performance of four commonly applied land surface evaporation models using a Grassland Shrubland Evergreen Needleleaf Forest Deciduous Broadleaf Forest
Received 3 March 2013 high-quality dataset of selected FLUXNET towers, The models that were examined include an energy
Received in revised form 5 October 2013 balance approach (Surface Energy Balance System; SEBS), a combination-type technique (single-source
Accepted 23 November 2013 P : PM), a c y method (advection-aridity; AA) and a radiation based
approach (modified Priestley-Taylor; PT-JPL). Twenty FLUXNET towers were selected based upon sat-
isfying stringent forcing data requirements and representing a wide range of biomes. These towers
encompassed a number of grassland, cropland, shrubland, evergreen needleleaf forest and deciduous
broadleaf forest sites. Based on the mean value of the Nash-Sutcliffe efficiency (NSE) and the root mean|
squared difference (RMSD), the order of overall performance of the models from best to worst were:
ensemble mean of models (0.61, 64), PT-JPL (0.59, 66), SEBS (0.42, 84), PM (0.26, 105) and AA (0.18,
105) [statistics stated as (NSE, RMSD in W m~2)]. Although PT-JPL uses a relatively simple and largely
@mpirical formulation of the evaporative process, the technique showed improved performance com- -1
pared to PM, possibly due to its partitioning of total evaporation (canopy transpiration, soil evaporation,
wet canopy evaporation) and lower uncertainties in the required forcing data. The SEBS model showed
low performance over tall and heterogeneous canopies, which was likely a consequence of the effects
of the roughness sub-layer parameterization employed in this scheme. However, SEBS performed well
overall. Relative to PT-JPL and SEBS, the PM and AA showed low performance over the majority of sites,
due to their sensitivity to the parameterization of resistances. Importantly, it should be noted that no
single model was consistently best across all biomes. Indeed, this outcome highlights the need for further
evaluation of each model’s structure and parameterizations to identify sensitivities and their appropriate

Cropland

0.5

Keywords:
Multi-model intercomparison
Latent heat flux

Energy balance
Penman-Monteith
Advection-aridity
Priestley-Taylor

E1-NL-Loo

G1-PT-Mi2

application to different surface types and conditions. It is expected that the results of this study can be 0%
used to mfm"n"\ de_us!ons regarding model _chm(e‘ for water resour(e§ and ag.ncultura] management, as S$2-US-SRM E2-US-Fuf D2-US-WCr
well as providing insight into model selection for global flux monitoring efforts. -1 -1

2013 Elsevier B.V. All rights reserved.

1. Introduction resource planning and decision support across a range of tempo-

ral and spatial scales. Improved understanding of the influence of

Reliable estimates of evaporation (E) are required for the accu-
rate representation of mass and energy exchanges at the land
surface. In hydrological and water resource studies, an evapora-
tion model is required to characterize the exchange of moisture
between the surface and the overlying atmosphere. Not surpris-
ingly, the choice of model can have considerable impact on water

* Corresponding author. Tel.: +61403053522.

E-mail addresses: a.ershadi@studnet.unsw.edu.au (A. Ershadi),
matthew.mccabe@kaust.edu.sa (M.F. McCabe), jason.evans@unsw.edu.au
(J.P. Evans), nchaney@princeton.edu (N.W. Chaney), efwood@princeton.edu
(EF. Wood).

model choice on flux estimation is required in order to better char-
acterize the fidelity of these simulations, particularly in light of an
increasing number of regional and global scale efforts to produce
land surface heat flux data products (Jiménez et al., 2011; Mueller
etal, 2013).

D3-US-MMS

A number of models have been developed for the estimation
of either the reference, potential or actual values of evaporation
(see reviews of Kalma et al., 2008 and Wang and Dickinson, 2012).
The reference evaporation is defined as the evaporation from a
hypothetical, well-watered ‘reference’ crop (Allen, 2000), while
potential evaporation is the maximum evaporation for a given sur-
face if moisture is not limiting (Penman, 1948; Irmak and Haman,
2003). Estimation of the reference and potential evaporation is

X
G4-US-Fpe

‘?ﬁ\

0168-1923/$ - see front matter © 2013 Elsevier B.V. All rights reserved. 1 1 C4-US-Bo1 E4-US-Wrc
http://dx.doi.org/10.1016/j.agrformet.2013.11.008 T 4 6 8 1012 2 4 8 8 10 12 > 4 8 8 10 12 12
fE —— SEBS —— AA PM = PT-JPL * EM




PT-JPL GLOBAL ET

MONTHLY, 0.5 DEGREE



PT-JPL GLOBAL ET

Mean LE (mm/month)
100 _

80 _

>
G
|

40




PT-JPL GLOBAL ET

Total LE (mm/month)
20000 J

5000 _

10000 _

5000 _

0.

1993

1992

1990

1989

086

1987



Work in progress: ~* 5% &% s
e Global, 1 km, daily, MODIS-era (10+ years)
e PT-JPL, PM-MOD16, SEBS, PMBL






PT-JPL ET Landsat




PT-JPL ET Landsat

EVAPOTRANSPIRATION
( ETag0s ; WmM™)



Remote Sensing of Environment 131 (2013) 103-118

Contents lists available at SciVerse ScienceDirect

Remote Sensing of Environment

journal homepage: www.elsevier.com/locate/rse

Actual evapotranspiration in drylands derived from in-situ and satellite data:
Assessing biophysical constraints

Monica Garcia *®*, Inge Sandholt *P, Pietro Ceccato , Marc Ridler 2, Eric Mougin €, Laurent Kergoat €,
Laura Morillas ¢, Franck Timouk €, Rasmus Fensholt 2, Francisco Domingo ¢

2 Institute of Geography, University of Copenhagen, @ster Voldgade 10, DK-1350 Copenhagen, Denmark
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ARTICLE INFO ABSTRACT
Article history: Improving regional estimates of actual evapotranspiration (AE) in water-limited regions located at climatic
Received 8 May 2012 transition zones is critical. This study assesses an AE model (PT-JPL model) based on downscaling potential

Received in revised form 10 December 2012
Accepted 14 December 2012
Available online xxxx

evapotranspiration according to multiple stresses at daily time-scale in two of these regions using MSG-SEVIRI
(surface temperature and albedo) and MODIS products (NDVI, LAI and fpsg). An open woody savanna in the
Sahel (Mali) and a Mediterranean grassland (Spain) were selected as test sites with Eddy Covariance data
used for evaluation. The PT-JPL model was modified to run at a daily time step and the outputs from eight

Iés)a/;vgtrrc;sr.lspiration algorithms differing in the input variables and also in the formulation of the biophysical constraints (stresses)
Surface temperature were compared with the AE from the Eddy Covariance. Model outputs were also compared with other modeling
Priestley-Taylor studies at similar global dryland ecosystems.

Thermal inertia The novelty of this paper is the computation of a key model parameter, the soil moisture constraint, relying on
MSG-SEVIRI the concept of apparent thermal inertia (fsy.477) computed with surface temperature and albedo observations.
K/[Vgglrs_limitEd ecosystems Our results showed that fsy.a7 from both in-situ and satellite data produced satisfactory results for AE at

the Sahelian savanna, comparable to parameterizations using field-measured Soil Water Content (SWC)
with r? greater than 0.80. In the Mediterranean grasslands however, with much lower daily AE values,
model results were not as good as in the Sahel (r?=0.57-0.31) but still better than reported values from
more complex models applied at the site such as the Two Source Model (TSM) or the Penman-Monteith
Leuning model (PML).

PT-JPL-daily model with a soil moisture constraint based on apparent thermal inertia, fs;.47; Offers great potential
for regionalization as no field-calibrations are required and water vapor deficit estimates, required in the original
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UNCERTAINTY: 4.5K)

LSPEM ET (W m-2)

ET UNCERTAINTY

= abs(ETLSTO-ETLST+)+abs(ETLSTO-ETLST)
abs(50-51 W m-2)+abs(50-58 W m2)
9 W m2 (global mean)

ET SENSITIVITY

— abs(ETLST+_ETLST-)/ETLST0
abs(51-58 W m=2)/50 W m-2
14% (global mean)
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DROUGHT?

Drought: meteorological (or, climatological, atmospheric), agricultural, hydrologic, socio-economic; exceedance of threshold.

Vegetation drought: physical drying of soil such that the overlying vegetation experiences physiological water stress manifested
in a reduction of productivity, loss of leaves/needles, and, ultimately, mortality.

Jos=P-ET

Soil Water Deficit (SWD):
IF P-ET>0, THEN SWD,=0, ELSE SWD,=P-ET+SWD,

Maximum Cumulative Water Deficit (MCWD):
max > SWD

Drought:
CWD,, MCWD, > CWD, MCWD

Fisher, J.B., Andreadis, K.M., 2013. Transpiration, physical evaporation and droughts.
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DROUGHT?

Drought: meteorological (or, climatological, atmospheric), agricultural, hydrologic, socio-economic; exceedance of threshold.

Vegetation drought: physical drying of soil such that the overlying vegetation experiences physiological water stress manifested
in a reduction of productivity, loss of leaves/needles, and, ultimately, mortality.

‘3BS=P—ET¥

Soil Water Deficit (SWD):
IF P-ET>0, THEN SWD,=0, ELSE SWD,=P-ET+SWD,

Maximum Cumulative Water Deficit (MCWD):
max > SWD

Drought:
CWD,, MCWD, > CWD, MCWD

Fisher, J.B., Andreadis, K.M., in press. Transpiration, physical evaporation and droughts.
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Fig. 6 Time series of tower measurements and model predictions at each site sorted in descending order by evaporative fraction. The
y-axis is latent heat of evaporation (LE) (W m ) and x-axis is year. Open circles are observed and closed squares are predicted LE based
on the FC model.

Fisher, J.B., et al., 2009. The land—atmosphere water flux in the tropics. Global Change Biology.
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DROUGHT?

Drought: meteorological (or, climatological, atmospheric), agricultural, hydrologic, socio-economic; exceedance of threshold.

Vegetation drought: physical drying of soil such that the overlying vegetation experiences physiological water stress manifested
in a reduction of productivity, loss of leaves/needles, and, ultimately, mortality.

‘3BS=P—ET¥

Soil Water Deficit (SWD):
IF P-ET>0, THEN SWD,=0, ELSE SWD,=P-ET+SWD,

Maximum Cumulative Water Deficit (MCWD):
max > SWD

Drought:
CWD,, MCWD, > CWD, MCWD

Fisher, J.B., Andreadis, K.M., in press. Transpiration, physical evaporation and droughts.
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Satellite-derived information is an autractive tool for vegeta-
tion monitoring at regional and global scales. It provides
full coverage of large and remote areas on a regular basis
over extended periods of time. Of the many remote sensing
(RS) based techniques available for analysing vegetation
dynamics, time-serics analysis of vegetation indices (VIs)
has become the most common approach for phenology and

The normalized difference vegetation index (NDVI) was
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[1] During the last decade two major drought events, one in
2005 and another in 2010, occurred in the Amazon basin.
Several studies have claimed the ability to detect the effect of
these droughts on Amazon vegetation response, measured
through satellite sensor vegetation indices (V1s). Such
monitoring capability is important as it potentially links
climate changes (increasing frequency and severity of
drought), vegetation response as observed through vegetation
greenness, and land-atmosphere carbon fluxes which directly
feedback into global climate change. However, we show
conclusively that it is not possible to detect the response of
vegetation to drought from space using VIs. We analysed 11
years of dry season (July-September) Moderate Resolution
Imaging Spectroradiometer (MODIS) enhanced vegetation
index (EVI) and normalised difference vegetation index
(NDVI) images. The VI standardised anomaly was analysed
alongside the absolute value of EVI and NDVI, and the VI
values for drought years were compared with those for non-
drought years. Through a series of analyses, the standardised
anomalics and VI values for drought years were shown to
be of similar magnitude to those for non-drought years.
Thus, while Amazon vegetation may respond to drought,
this is not detectable through satellite-observed changes in
vegetation greenness. A significant long-term decadal
decline in VI values is reported, which is independent of
the occurrence of drought. This trend may be caused by
environmental or noise-related factors which require
further investigation. Citation: Atkinson, P. M., J. Dash, and
C. Jeganathan (2011), Amazon vegetation greenness as measured
by satellte sensors over the last decade, Geophys. Res. Lett, 38,
L19105, doir10.1029/2011GLO49118.

1. Introduction

[2] The Amazon region contains around $4% of the
world’s rainforest and stores more than 100 billion tonnes of
carbon [Malhi et al., 2006). A general increase in temper-
ature since the 1970s, and decadal-scale variation in rainfall,
have been recorded for the Amazon rainforest [New et al.,
2000}, while Li ef al. [2008] reported a 0.32 per decade
decline in the standard precipitation index between 1970 and
1999, suggesting increasingly dry conditions in the Amazon
in recent years. Several global circulation models (GCMs)
have projected these trends into the future [Marengo, 2005]
leading to concerns over the effects of increased frequency
and severity of drought on net primary productivity and

'Global Environmental Change and Earth Observation Research
Group, Geography and Environment, U of Southampton,
Southampton, UK.
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L19105

biomass carbon storage in the Amazon basin [Lewis et al.,
2011] and possible feedback effects of biomass loss on
climate change.

[3) Changes in precipitation amount and duration may
affect photosynthetic activity and the functioning and con-
dition of the forest which, in tum, may affect overall carbon
fluxes to the atmosphere. In a normal year, the Amazon
rainforest absorbs approximately 1.5 bilfion tonnes of car-
bon from the atmosphere. However, Lewis ef al. [2011]
predicted, based on a model, a net transfer of 2.2 billion
tonnes of carbon to the atmosphere in 2010, a drought year.
Thus, the prospect of increasingly dry conditions, and an
increasing frequency of drought years, is of great concern as
such conditions have the potential to tum the Amazon from
a sink of carbon into a source of carbon, greatly affecting
rates of global climate change [Lewis ef al., 2011].

[4] For an arca as vast as the Amazon, satellite remote
sensing provides the only possible means of monitoring the
impact of droughts on vegetation at the basin scale. Such
remote sensing approaches generally rely upon the use of
vegetation indices (VIs) to measure vegetation “greenness”.
The ability to detect from space the effect of drought on
vegetation response, in the form of vegetation greenness, is
potentially of crucial importance in monitoring the effects of
drought on carbon flux in the Amazon.

[¢] During the last decade two severe drought cvents
affected the Amazon basin; one in 2005 and the other in
2010. The drought in 2010 was spatially more extensive
than that in 2005 and affected more than 3 million km*
[Lewis et al., 2011]. Saleska et al. [2007] were the first to
report a significant increase in vegetation greenness over the
Amazon during the 2005 drought using the enhanced veg-
etation index (EVI) from the Moderate Resolution Imaging
Spectroradiometer (MODIS) sensor. However, this was later
challenged by Samanta et al. [2010] on the basis of poor
data quality and processing methodology. They suggested
greater vegetation browning (or no change) than greening
during the 2005 drought. Moreover, Anderson et al. [2010]
reported positive EVI anomalies associated with higher tree
mortality and questioned Saleska et al.’s [2007) interpreta-
tion of the observed changes in VIs. Brando et al. [2010],
using climate, satellite and field data found no relation-
ship between the inter-annual variability in plant available
water (PAW) and EVI for densely forested areas in the
Amazon, but observed a decline in EVI with decline in
PAW for areas with low vegetation cover. Recently, a key
paper published in this journal by Xu et al. [2011] sug-
gested, using MODIS VIS, that vegetation browning in 2010
was four times greater than in 2005 affecting more than 50%
of the forested area in the Amazon and, thus, that the
increased browning was a response to the 2010 drought.
‘Thus, controversy exists in the literature about the effects of
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The 2010 Amazon Drought

Simon L. Lewis,**t Paulo M. Brando,?* Oliver L. Phillips,*
Geertje M. F. van der Heijden,* Daniel Nepstad®

project an increase in the frequency and
severity of drought events affecting the
Amazon region as a consequence of anthropo-
genic greenhouse gas emissions (/). The proximate
cause is twofold, increasing Pacific sea surface
temperatures (SSTs), which may intensify El Nifio
Southem Oscillation events and associated peri-
odic Amazon droughts, and an increase in the fre-
quency of historically rarer droughts associated with
high Atlantic SSTs and northwest displacement of
the intertropical convergence zone (/, 2). Such
droughts may lead to a loss of some Amazon for-
ests, which would accelerate climate change (3).
In 2005, a major Atlantic SST-associated drought
occurred, identified as a 1-in-100-year event (2).
Here, we report on a second drought in 2010, when
Atlantic SSTs were again high.
We calculated standardized lies from a
decade of satellite-derived dry-season rainfall data
(Tropical Rainfall Measuring Mission, 0.25° res-
olution) across 5.3 million km® of Amazonia for
2010 and 2005 (4). We used identical reference
periods to allow a strict comparison of both drought
events (4). On the basis of this index, the 2010
drought was more spatially extensive than the 2005
drought (rainfall anomalies < ~1 SD over 3.0
million km” and 1.9 million km? in 2010 and 2005,
respectively; Fig. 1 and fig. S1). Because dry-season

Scwral global circulation models (GCMs)

anomalies do not necessarily correlate with water
stress for forest trees, we also calculated the max-
imum climatological water deficit (MCWD) for
each year as the most negative cumulative value of
water input minus estimated forest evapotranspira-
tion (5). This measure of drought intensity corre-
lates with Amazon forest tree mortality (6). In
2010, the difference in MCWD from the decadal
mean that significantly increases tree mortality
(< -25 mm) spanned 3.2 million km?, compared
with 2.5 million km? in 2005. The 2010 drought
had three identifiable epicenters in southwestem
Amazonia, north-central Bolivia, and Brazil’s Mato
Grosso state. In 2005 only a single southwestern
Amazonia epicenter was detectable (fig. S1).
The relationship between the change in MCWD
and changes in aboveground carbon storage
derived from forest inventory plots affected by
the 2005 drought (6) provides a first approximation
of the biomass carbon impact of the 2010 event.
Summing the change in carbon storage predicted
by the 2010 MCWD difference across Amazonia
gives a total impact of 2.2 Pg C [95% confidence
intervals (CI) 1.2 and 3.4], compared with 1.6 Pg C
for the 2005 event (C1 0.8, 2.6). These values are
relative to the predrought carbon uptake and rep-
resent the sum of (/) the temporary cessation of
biomass increases over the 2-year drought mea-
surement interval (~0.8 Pg C) and (2) biomass lost

2010

Fig. 1. (Aand B) Satellite-derived standardized anomalies for dry-season rainfall for the two most extensive
droughts of the 21st century in Amazonia. (C and D) The difference in the 12-month (October to September)
MCWD from the decadal mean (excluding 2005 and 2010), a measure of drought intensity that correl
with tree mortality. (A) and (C) show the 2005 drought; (B) and (D) show the 2010 drought.
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via tree montality, a committed carbon flux from
decomposition over several years (~1.4 Pg C after
the 2010 drought). In most years, these forests are a
carbon sink; drought reverses this sink.
Considerable uncertainty remains, related to the
soil characteristics within the epicenters of the
2010 drought, which could moderate or exacerbate
climatic drying, whether a second drought will kill
more trees (ie., those damaged by the initial
drought) or fewer (i.e., if most drought-susceptible
trees are already dead), and whether drought slows
soil respiration (temporarily offsetting the biomass
carbon source). New field measurements will be
required to refine our initial estimates.
The two recent Amazon droughts demonstrate
a mechanism by which remaining intact tropical for-
ests of South America can shift from buffering the
increase in atmospheric carbon dioxide to accelerat-
ing it. Indeed, two major droughts in a decade may
largely offset the net gains of ~0.4 Pg C year ' in intact
Amazon forest aboveground biomass in nondrought
years. Thus, repeated droughts may have important
decadal-scale impacts on the global carbon cycle.
Droughts co-occur with peaks of fire activity
(5). Such interactions among climatic changes, hu-
man actions, and forest responses represent
potential positive feedbacks that could lead to
widespread Amazon forest degradation or loss (7).
The significance of these processes will depend on
the growth response of tropical trees to increases in
atmospheric carbon dioxide concentration, fire man-
agement, and deforestation trends (3, 7). Nevertheless,
any shift to drier conditions would favor drought-
adapted species, and drier forests store less carbon
(8). If drought events continue, the era of intact
Amazon forests buffering the increase in atmo-
spheric carbon dioxide may have passed.
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