

ECOSTRESS ET Algorithms

Overview

Guillevic P., Hook S., Hulley G., Anderson M., Fisher J. and Allen R.

Evapotranspiration

Soil evaporation and vegetation transpiration

Bottom-up: Big leaf model

 $ET \downarrow leaf \sim g \downarrow s \ g \downarrow g / g \downarrow s + g \downarrow b \ (e \downarrow sat \cdot g \downarrow s + g \downarrow s + g \downarrow b \ (e \downarrow sat \cdot g \downarrow s + g \downarrow s$

 $g \downarrow s = g \downarrow max (fPAR) f \downarrow 1 (T \downarrow leaf)$ $f \downarrow 2 (\Delta e) f \downarrow 3 (C \downarrow i) f \downarrow 4 (\psi \downarrow s)$ $ET = \int Canopy \uparrow m ET \downarrow leaf$

Under stress conditions, plants close their stomata and leaf temperature increases

ECOSTRESS approaches to mapping ET

Relationship between LST and ET

$$ET = R_n - H - G$$

$$R_{n} = (1 - albedo)R_{sw} - \epsilon \sigma T_{s}^{4} + \epsilon R_{LW}$$

$$H = \rho C_{p} \frac{T_{s} + T_{air}}{r_{s}}$$
?

Energy balance approach:

Given known radiative energy inputs (R_n) , how much water loss is required to keep the soil and vegetation at the observed temperatures?

Outline

- ECOSTRESS ET requirements
- Impact of revisit period on ET
- Impact of LST uncertainties on ET
- Ensemble of ET models for ECOSTRESS:
 - ALEXI from USDA (Two-source Energy balance)
 - METRIC from U. of Idaho (In-scene approach)
 - PT-JPL from JPL (Radiation based model)

Requirements

- From observations: Instantaneous ET (at varying overpass time)
- Standard product: daily ET
- Requirements

	Evapotranspiration		Land Surface Temperature	
	Accuracy	Precision	Accuracy	Precision
Requirements	15%	5%	2K	0.3K
Capabilities	10%	1%	1K	0.2K

Ancillary information

- Meteorological data (Air temperature and humidity, wind speed)
- Albedo from other missions

Landsat 7 & 8: 8-day revisit, 30m resolution

ESA/Sentinel 2: two satellites, 5-day revisit, 10 to 60m resolution,

launch of first satellite in April 2015

Impact of the revisit period on ET

ECOSTRESS revisit period is 3-5 days. What is the impact on monthly and seasonal fluxes?

- Empirical study based on 21 AmeriFlux sites over contiguous US (2125 months – ~9 years per sites)
- Only clear-sky conditions are considered
- Representativeness of different temporal samplings

Impact of the revisit period on ET

Seasonal 13:00 ET RMSE (1-D revisit dataset as reference)

Differences with 1-D revisit (control dataset) are twice as large for a 16-day than a 4-day revisit period

Impact of the revisit period

Seasonal ET RMSE (1-D revisit dataset as reference)

- Lowest differences for cropland and needleleaf forests (lower temporal variability)
- Similar differences at 10AM and 1PM except for savannah

ET sensitivity to LST uncertainty

- 1. LST estimated from up and down-welling LW radiation
- 2. R_n and H calculated for LST + Δ LST
- 3. Δ ET estimated using energy balance equation

If LST meets requirements

ET meets requirements

ECOSTRESS ensemble of ET models

ECOSTRESS is gathering ET models that are commonly used for research and operational applications

The ensemble of model simulations is used to:

- Provide the best estimates of ET for a wide range of land cover types and climates
 - ALEXI and METRIC were initially developed for managed landscape
 - PT-JPL is more used for natural ecosystems
- Evaluate the uncertainties on ET due to model physics and model parameterizations – ECOSTRESS standard ET product could be a weighting average of outputs from different models

ALEXI - The Atmosphere Land-Exchange Inverse model Co-I: Martha C. Anderson (USDA)

Step 1: ET at 5km resolution

Coupling surface energy with ABL model to simulate air temperature T_a at 50m

Step 2: ET at high spatial resolution

Downscaling ET at high resolution from

step 1 using high resolution LST and VNIR

ALEXI – Advantage and applications

The Evaporative Stress
Index from ALEXI is
part of the
National Integrated
Drought Information
System (NIDIS)

Crop water use

- Crop phenology monitoring
- Drought early warning (water stress detection)

Applications of ALEXI

METRIC — Mapping ET with high Resolution and Internalized Calibration Co-I: Rick G. Allen (U. of Idaho)

METRIC uses the in-scene information and ground reference from weather stations

ET =
$$R_n$$
 - H - G
with $H = \rho C_p \frac{T_s - T_{air}}{r_a}$

Assumption:

$$\Delta T = a T_s + b$$

with a, b are in-scene empirical coefficients calculated from energy balance applied to:

- "hot" pixel where ET = 0
- "cold" pixel where ET = 1.05 x potential ET

Designed for relatively small agricultural regions (100x100 miles)

Each image provides internal and automatic calibration

METRIC – Advantage and applications

Operational applications of METRIC in Idaho:

- Quantify net depletion from ground water pumping
- Compare actual ET with water right
- Calculate natural and irrigation-induced recharge to aquifers
- Monitor crop phenology

Dedicated for high resolution imagery,
METRIC is used by more western states

PT-JPL — Priestley and Taylor approach Co-I: Joshua B. Fisher (JPL)

$$ET_{canopy} = \int_{g} f_{T} f_{M} \alpha \frac{\Delta}{\Delta + \gamma} R_{nc}$$

bio-physiological constraints potential ET

due to light, temperature and water stress limitations

represents the atmospheric moisture demand

with
$$R_{nc} = (1 - albedo)R_{sw} - \epsilon \sigma T_s^4 + \epsilon R_{LW}$$

the canopy net radiation

 R_{SW} , R_{IW} the shortwave and longwave incoming radiation

 $\Delta = de / dT$ the slope of the saturation water vapor function

the psychrometric constant and the Steffan-Boltzmann γ, σ

α the Priestley-Taylor coefficient = 1.26 (empirical value)

the surface emissivity 3

PT-JPL – Advantage and applications

Conclusion

Next step will be focused on model uncertainty estimates and model intercomparison

 A detailed description of the models and the validation procedure of the ECOSTRESS ET product are coming after the break...