

ECOSTRESS

L1/L2 Algorithms and Product Development

Principal Investigator: Simon Hook, JPL Co-Investigators:

Rick Allen, Univ. of Idaho; Martha Anderson, USDA Joshua Fisher, JPL; Andrew French, USDA Glynn Hulley, JPL; Eric Wood, Princeton Univ. **Collaborators:** Christopher Hain, Univ. Maryland

(c) 2014 California Institute of Technology. Government sponsorship acknowledged.

2014 HyspIRI Science and Applications Workshop, Pasadena, CA, 14-16 October, 2014

Outline

- 1. ECOSTRESS Science Data Products
- 2. Thermal Infrared Theoretical Basis
- 3. Land Surface Temperature (LST) and Emissivity Algorithms
- 4. Uncertainty Analysis
- 5. Simulated ECOSTRESS L2 products (MASTER)

ECOSTRESS Data Products (LO->L4)

Data Products	Description	Information Required	Plans for Validation/Reprocessing
Level-0	Reconstructed, unprocessed instrument data at full resolution; any communication artifacts removed.	Raw science data packets	Automated process, no reprocessing needed.
Level-1A	Reconstructed unprocessed instrument data at full resolution, time-referenced, and annotated with ancillary information, including radiometric and geometric calibration coefficients.	Level-0 raw data	Automated process, minimal reprocessing.
Level-1B	Level 1a data that have been processed to sensor units by applying the coefficients for radiometric calibration and geometric resampling	Level-1A & radiometric and geometric coefficients	Automated process, with full reprocessing as needed. Validation of at-sensor radiance using data from autonomous Lake Tahoe and Salton Sea cal/val sites.
Level-2	LST and spectral emissivity	Level-1B data, cloud mask, NWP atmospheric profiles, ASTER digital elevation data.	Automatic process, with full reprocessing as necessary (e.g. algorithm changes). Validation (T-based and R-based) using a global set of sites including water, vegetation, sand dunes, grasslands, and soil land cover types.
Level-3	Evapotranspiration (ET),	Level-2 products, VNIR data from Landsat, met. data from NCEP.	Reprocessing as needed based on Level 2 reprocessing. Validation with eddy covariance data from FLUXNET sites (global).
Level-4	Water Use Efficiency (WUE), Evaporative Stress Index (ESI)	Level-3 products, GPP	Reprocessing as needed based on Level 2 and 3 reprocessing. Validation with eddy covariance data from FLUXNET sites (global).

Theoretical Basis: Planck Function

$$B_{\lambda} = \frac{C_{1}}{\lambda^{5} \left[\exp\left(\frac{C_{2}}{\lambda T_{s}}\right) - 1 \right]}$$
$$T_{s} = B_{\lambda}^{-1}$$

where :

 B_{λ} = blackbody spectral radiance λ = wavelength T_s = Surface Temperature

 C_1 = first radiation constant

 C_2 = second radiation constant

As the temperature increases the peak in the Planck function shifts to shorter and shorter wavelengths

Spectral Emissivity

Emissivity: ratio of the spectral radiance of a material to that of a blackbody at the same temperature:

$$\mathcal{E}_{\lambda} = \frac{L_{\lambda}(\text{Material})}{L_{\lambda}(\text{Blackbody})}$$

$$L_{\lambda}$$
 = Spectral Radiance

HyspIRI/ECOSTRESS Spectral Response Functions

Thermal Infrared Radiative Transfer

Atmospheric Correction

> Atmospheric Parameters: $\tau_i(\theta), L_i^{\uparrow}(\theta), L_i^{\downarrow}(\theta)$

- Estimated using radiative transfer model (MODTRAN)
- Atmospheric Profiles (coincident with observation)
- Elevation data
- Water Vapor Scaling Method (Tonooka, 2005)
- Used to improve accuracy on pixel-by-pixel basis

Temperature/Emissivity retrieval algorithms To solve the under-determined temperature-emissivity problem:

N spectral measurements (N radiances) with N + 1 unknowns (N emissivity, 1 Temperature)

- 1. Split window approach
 - Requires 2 bands
 - Prescribed spectral emissivity
 - Regression coefficients should represent all configurations (atmospheric water content, view angle, surface T_{air} , ...)

2. Temperature-Emissivity Separation (TES) ← FCOSTRFSS

- Multispectral (minimum 3 bands)
- Requires atmospheric profiles for full atmospheric correction with MODTRAN
- Based on Emissivity model (Calibration Curve)

0.2

0.3 MMD^{0.7852}

 $LST = a_0 + a_1 T_{11\mu m} + a_2 (T_{11\mu m} - T_{12\mu m})$

0.65

0.1

JPL Publication 12-17

MODIS MOD21 Land Surface Temperature and Emissivity Algorithm Theoretical Basis Document

G. Hulley S. Hook T. Hughes Jet Propulsion Laboratory

National Aeronautics and Space Administration

Jet Propulsion Laboratory California Institute of Technology Pasadena, California

August 2012

JPL Publication 11-5

HyspIRI Level-2 Thermal Infrared (TIR) Land Surface Temperature and Emissivity Algorithm Theoretical Basis Document

G. Hulley S. Hook Jet Propulsion Laboratory

National Aeronautics and Space Administration

Jet Propulsion Laboratory California Institute of Technology Pasadena, California

May 2011

Effect of Water Vapor Scaling (WVS) Model Tonooka, 2005

ECOSTRESS Measurement Requirement (baseline) and Capability

Table F.1-3. ECOSTRESS measurement requirement and capability. Capability exceeds requirement in all cases.

	Eva	potranspir	ation	Land Su	irface Temp	erature (K)	BT at Ser	nsor at 300	Kelvin (K)
	Accuracy	Precision	Uncertainty	Accuracy	Precision	Uncertainty	Accuracy	Precision	Uncertainty
Requirement	15%	5%	16%	2	0.3	2.0	1.0	0.3	1.0
Capability	10%	1%	10%	1	0.2	1.0	0.5	0.1	0.5

Which LST&E algorithm will meet these requirements?

LST&E Uncertainty Analysis (ROSES 2010 – Uncertainty Analysis Program)

<u>Temperature/Emissivity Uncertainty Simulator (TEUSim) developed at JPL</u>

LST Algorithm Uncertainty Analysis

Hulley et al. 2012 (ESDR Uncertai	inty Analysis)	LST Accuracy (K)				
Surface types	Samples	MODTRAN Simulations	Split-Window (MOD11)	3-band TES (MOD21)	5-band TES (ASTER)		
Dense vegetation, Water, Ice, Snow	8	660,096	1.59	2.19	1.63		
Rocks	48	3,960,576	4.31	1.44	1.45		
Soils	45	3,713,040	1.27	0.89	0.91		
Sands	10	825,120	2.38	1.12	0.99		
Total	111	9,158,832	2.66	1.49	1.13		
					()		

TES 5-band approach meets ~1 K accuracy capability for **ECOSTRESS**

Emissivity error vs LST error

2.5% Emissivity error = ~4.5 K LST error (2-band Split-window, e.g. MOD11)2.5% Emissivity error = ~1.5 K LST error (3-band TES e.g. MOD21)

Emissivity: Split-Window versus TES retrieval

0

MOD11 classified as bare and assigned single emissivity but a wide range in emissivity as seen with MOD21 (TES)

MASTER Emissivity Mosaic at ~60 m (ECOSTRESS)

19

MASTER LST Mosaic at ~60 m (ECOSTRESS)

Summary

- ECOSTRESS L2 LST&E Algorithms well characterized with full uncertainty statistics
- 5-band TES algorithm will meet ECOSTRESS capability of 1 K (LST) and 10% (Evapotranspiration) accuracy
- Physically retrieving emissivity with TES algorithm is critical for retrieving accurate LST
- A 5-band instrument will improve cloud detection capabilities and allow for surface compositional studies

EXTRAS

→ECOSTRESS

Mission

- Class D \$30M cost cap
- 31-months from project start to delivery
- JPL implementation and management
- 69-month project duration (Phase A-F)
- On ISS-JEMS Module
- 12-month Science Operations (Phase E)

The inclined, precessing ISS orbit enables ECOSTRESS to sample the diurnal cycle in critical regions across the globe at spatiotemporal scales missed by current instruments in Sunsynchronous polar and high-altitude geostationary orbits.

Revisit Time versus Spatial Resolution

With sphere size indicating # of thermal infrared window bands

Instrument

- Leverages functionally-tested PHyTIR space-ready hardware developed under the NASA Instrument Incubator Program:
 - Spectral resolution: 5 bands in the thermal infrared window (8-12.5 µm) part of the electromagnetic spectrum
 - Noise equivalent delta temperature: ≤ 0.1 K
 - Spatial resolution: 38 m x 57 m
 - Swath width: 384 km (51°)
- Well understood measurement and algorithms based on prior missions, such as ASTER, MODIS, and Landsat

Physical TES retrieval (MOD21) vs Classification (MOD11)

- Mauna Loa Caldera, Hawaii
- Mafic lava flow (basalt)

Uncertainty Parameterization

How do we make the uncertainties useful?

$$\delta LST_{MODIS} = a_o + a_1 TCW + a_2 SVA + a_3 TCW \cdot SVA + a_4 TCW^2 + a_5 SVA^2$$
(10)

a_i = regression coefficients dependent on surface type (gray, bare, transition) SVA = sensor view angle

TCW = total column water estimate (cm), e.g. from MOD07, NCEP

LST Validation over semi-arid sites

Sites	Obs	MOD11 (split-window	MOD21) (TES 3-band)
	(2003-2005)	Bia	s (K)
Algodones	956	-1.84	1.39
Great Sands	546	-3.38	0.42
Kelso	759	-3.27	0.36
Killpecker	463	-3.29	0.12
Little Sahara	670	-2.73	0.78
White Sands	742	-0.08	1.15

MOD11 mean cold bias of ~3 K over arid, semi-arid sites

Lake Tahoe/Salton Sea LST Validation

		MOD11 (Split-Window)	MOD21 (TES 3-band)
Lake Tahoe (2003-2005)	Bias [K]	0.12	0.22
	RMSE [K]	0.49	0.54
Salton Sea (2008-2010)	Bias [K]	-0.47	1.01
	RMSE [K]	0.98	1.33

Split-Window Approach: Use Land Classes (IGBP) to assign emissivities based on lab measurements

IGBP	IGBP CLASS
CLASS ID (i)	Description
0	Water Bodies
1	Evergreen Needleleaf Forest
2	Evergreen Broadleaf Forest
3	Deciduous Needleleaf Forest
4	Deciduous Broadleaf Forest
5	Mixed Forest
6	Closed Shrublands
7	Open Shrublands
8	Woody Savannas
9	Savannas
10	Grasslands
11	Permanent Wetlands
12	Croplands
13	Urban and Built-Up
14	Cropland/Natural Vegetation Mosaic
15	Snow and Ice
16	Barren or Sparsely Vegetated
17	Missing Data

VIIRS Algorithm:
Ts =
$$a_0(i) + a_1(i) T_{11} + a_2(i) (T_{11}-T_{12}) + a_3(i) (sec\theta-1) + a_4(i) (T_{11}-T_{12})^2$$

Temperature/Emissivity Separation (TES)

T-E separation is under-determined If have N equations always have N+1 unknowns: Radiance Band $1 = T + e_1$ Radiance Band $2 = T + e_2$ Radiance Band $3 = T + e_3$

THIRSTY presents a significant improvement in spatial resolution, temporal coverage, and accuracy (from spectral coverage) over most other TIR instruments

Instrument	Platform	Resolution (m)	Launch year	Revisit (days)	Daytime overpass	TIR bands (8-12 μm)
ASTER	Terra	90	2000	16	10:30 am	5
TIRS	Landsat 8	120	2013	16	10:11 am	2
NIRST	Aquarius	350	2011	Daily	6:00 am/pm	2
VIIRS	S-NPP	750	2011	Daily	1:30 am/pm	4
MODIS	Terra/Aqua	1000	2000/2002	Daily	10:30/1:30 am/ pm	4
GOES	Multiple	4000	2000	Daily	15 min	2

TES Accuracy Simulations

Atmospheric Profiles:

- 382 Global Radiosonde profiles (0-6 cm TCW)
- Each Tair varied by [-2 0 2] K
- Each RH varied by [0.8 1 1.2]
- Tsurf varied from [-5 0 5 10] K

Atmospheric profile uncertainties:

- Tair 2 K
- RH 10 (20) %

TES	LST R	MSE (K) – Veget	ation		
	NEDT 0.1 K	NEDT 0.3 K	NEDT 0.5 K		
3-band	1.57 (2.33)	1.60 (2.34)	1.61 (2.41)		
5-band	1.55 (2.15)	1.57 (2.18)	1.61 (2.25)		
8-band	?	?	?		
	LST RMSE (K) – Soils				
TES	LS	ST RMSE (K) – So	ils		
TES	LS NEDT 0.1 K	<mark>T RMSE (K) – So</mark> NEDT 0.3 K	ils NEDT 0.5 K		
TES 3-band	LS NEDT 0.1 K 1.54	<mark>T RMSE (K) – So</mark> NEDT 0.3 K 1.59	ils NEDT 0.5 K 1.62		
TES 3-band 5-band	LS NEDT 0.1 K 1.54 1.44	T RMSE (K) – So NEDT 0.3 K 1.59 1.47	ils NEDT 0.5 K 1.62 1.47		