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Motivation  

• Some 20,000 km of river are contaminated by hardrock mining in 
U.S. (EPA, 1997).  

• About 40  pit lakes in the state of Nevada, and increasing  
(Shevenell, 1999). 

• Hyperspectral RS a tool for rapid assessment of acid mine drainage 
contamination and monitoring environmental quality/regulatory 
compliance. 

 

 



Acid Mine Drainage 
(AMD) 

• Exposure of metal sulfides to oxygen and 
water produces chemical instability, 
resulting in acid generating reactions and 
the formation of insoluble Fe OH- and 
soluble Fe SO4

2-. 

 

 

 

• Precipitant speciation controlled by pH, 
oxidation state, moisture content. Common 
fe-bearing minerals: copiapite, jarosite, 
goethite, ferrihydrite, hematite. 

 
 

FeS2 (s) + 15/4 O2 (aq) + 7/2 H2O (l)   

Fe(OH)3 (s) + 2H2SO4 (aq) 

Leviathan Creek 3 miles down 
from mine site (1999) Photo: U.S. EPA 

East Fork Carson River at Bryant 
Creek (Sept 23, 1969) Photo: U.S. EPA 



Pyrite Weathering 

Mechanisms: 

• Atmospheric gases, meteoric 
water, microorganisms.  

Reaction Rates Influenced by: 

• Mineral’s composition, crystal 
size/shape, surface area, and 
crystal perfection 

• Volume of weathering solution 

• pH and dissolved CO2 content of 
weathering solution 

• Temperature 
 

 

 

Rate of pyrite oxidation:  

• Rates found at Leviathan Mine by 

Ball and Nordstrom (1989), 40 

mmol/hr 

• For reference, silicate weathering 

rates, 0.4-1.5 mmol/day (Colman, 

1981).  

Weathering rates of pyrite oxidation 

products varies as well. 



Leviathan 
Superfund Site Tahoe Box Line 11 (T23) 



Leviathan Creek 

Photo: USGS Carson City, NV Photo: U.S. EPA 

N 

200 m 



Leviathan  
Superfund Site 
• 3 million gallons treated annually 

• Pond water composition: 

 pH 2.5 

 660 mg/L Fe 

 2.1 mg/L As 

 3200 mg/L SO4  

• 200 acres disturbed land, 12 acre 
pond surface area 

• Seasonality of evaporation ponds 
(captured by HyspIRI flights) 

Leviathan Mine 2010 aerial photo (Wikipedia.org)  

Open pit  

Waste rock 

Pond 1 

Subsurface drains 

Pond 2N, 2S 

Channelized Leviathan Crk 



Leviathan  
Superfund Site 
• 3 million gallons treated annually 

• Pond water composition: 

 pH 2.5 

 660 mg/L Fe 

 2.1 mg/L As 

 3200 mg/L SO4  
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pond surface area 
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Channelized Leviathan Crk 
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Google Earth Images 



Objectives: 

1.) Mineralogy: Identify seasonally induced changes in mineralogy on 
disturbed surfaces and on pond wall liners at the Leviathan Mine 
Superfund site. 

 

2.) Mine Water: Identify spectral signatures of mine affected waters 
and explore the factors influencing them. 

 

Pond 3 (meteoric water collection) on 04/24/2014  



Methods:  
Mineral Classification 

• Identify AMD minerals:  
• Fe3+-bearing oxidation products 

display distinctive absorption bands: 
narrow feature at 0.43 μm, 0.6 and 
wide 0.8-0.9 μm, sometimes 2.3 μm. 

• Use additional hyperspectral image 
with 2 m pixel (SpecTIR) to aid 
classification  

• Ground verification with ASD 
Iron oxide, iron hydroxide, iron sulfate spectra. From Remote Sensing 
for Earth Sciences, Ch. 1 Spectroscopy of Rocks and Minerals and 
Principles of Spectroscopy by R.N. Clark. 



Pond 1 on 10/09/14 

Pond 1 on 10/09/14 

Pond 2S on 08/08/14 

Clarifier (sludge storage) 
on 10/31/13 
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ASD Field Spectra – Small Variations in Fe minerals on Pond liners 
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SpecTIR 2 meter pixel (08/17/07) 
DCS: R: 590 nm  
         G: 529 nm  
         B: 483 nm 

AVIRIS 14.5 meter pixel (09/19/13) 
DCS: R: band 24 (589 nm) 
         G: band 18 (530 nm) 
         B: band 13 (482 nm) 

200 m 200 m N N 

Red, magenta, yellow, 
orange  concentrated 
areas of AMD minerals 
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SpecTIR (2m) DCS Spectra Key pond 2N jarosite (red)

pond 2S jarosite (yellow)

gypsum in clarifier (light green)

waste rock jarosite/alunite
(magenta)
vegetation (green)

FeOx clays (brown)
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200 m 

Illustrates subtle differences in Jarosite spectra in dried out ponds. 
Differences not distinguishable in AVIRIS (15m) image. HyspIRI (30m)? 

100m 

K-mean on SpecTIR image: 15 classifications 



Mineralogy Summary: 

• Mixtures of iron hydroxides/sulfates 
commonly associated with AMD are 
present at Leviathan and can be 
seen spectrally in airborne data and 
on the ground. 

• Patterns of AMD minerals definitely 
apparent in ground data and 
SpecTIR. Pattern identification in 
HyspIRI data will be more 
challenging. 

 

Further work… 

 

• Employ spectral unmixing. 

•  Identify seasonal changes in 
iron minerals by comparing 
AVIRIS scenes (2013-2014). 

• Make conclusions about 
weathering rates/patterns. 

 



Methods: Water Spectra 

Pond 2N on 04/24/2014 



Methods: Characterize  
Water Spectra 

• Test idea that soluble iron is 
causing unique spectral 
characteristics/color. 

• Compare the spectral 
signature of mine affected 
waters vs. natural waters. 

• Correlate mine water spectra 
to solutions of known iron 
concentrations for qualitative 
association.   
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Continuum Removed 
Zoomed in 675 nm feature 

deeper pixels 

shallower pixels  

Shallow near-shore pixels have 
deepest 675 nm feature. 



Algae in mine water 

Pond 2N 
10/2014 

Pond 3 
04/2014 

Pond 2N 
10/2014 

5 cm 
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Water Spectra Across Scene 
AVIRIS May 2013 Image 

 

pond 2N deep

pond 2N shallow

pond 4

alpine lake

New Melones lake deep

Topaz Lake

Mine processing water? Near New M. Lake

Yerington

Mono Lake shallow

Leviathan water 
(shallow) 

(deep) 



Water Summary: 

• Identified that Leviathan waters 
exhibit unique spectral curves, 
different from most natural waters. 

• Spectral signature is depth 
dependent.  

 

Further work… 

 

• Link airborne water spectra to 
laboratory solutions for 
qualitative comparison. 



Questions 
Monitor Pass Mining 
Area, CA 


