Changes in non-photosynthetic vegetation cover and liquid water thickness during California's record drought

Phil Dennison¹, Austin Coates¹ Dar Roberts², Kenneth Dudley¹ Keely Roth³ ¹Utah Remote Sensing Applications Lab, University of Utah ²Univ. of Calif. Santa Barbara ³Univ. of Calif. Davis

Drought

- Impacts on Ecosystems
 - Loss of hydraulic conductance/ dieback
 - Increased risk of fire and insect attack
 - Increased vegetation mortality
 - Decreased vegetation cover and changes in forage availability/ quality
 - Reduced primary productivity
 - Reduced carbon uptake
- Agricultural and Social Impacts
 - Irrigation & culinary water shortages
 - Decreased crop yields
 - Increased food costs
 - Huge economic costs (billions)

Chaparral dieback, Feb. 2014 (Steve Davis)

HyspIRI-Relevant Questions

- How does drought impact fractional cover of photosynthetic vegetation and non-photosynthetic vegetation (NPV)?
 - HyspIRI VSWIR data can easily resolve differences between NPV and soil
- How does drought impact canopy water content?
 - New three-phase atmospheric correction provides a standard liquid water thickness product
- How do changes in vegetation fractional cover and liquid water thickness vary by species/plant functional type?
 - HyspIRI VSWIR data can be used to map dominant species and PFTs
- How do changes in fractional cover and transpiration drive changes in land surface temperature?
 - Complementary abilities of HyspIRI VSWIR and TIR

Driest Three-Year Periods, 1900-2014, Santa Barbara, California

Water Years	3-year Precip. (cm)
2012-2014	72.8
1959-1961	76.1
1988-1990	76.7
1947-1949	85.3
1948-1950	86.8
1987-1989	87.3
1946-1948	87.4
1989-1991	87.6
1970-1972	87.7
1949-1951	89.9
Median (1900-2014)	134.7

Santa Barbara Cumulative Precipitation

Santa Barbara Cumulative Precipitation

Methods

- We examined changes in vegetation fractional cover and liquid water thickness
- HyspIRI Preparatory Campaign data collected in:
 - April 2013
 - June 2013
 - Nov. 2013
 - April 2014

Spectral Mixture Analysis

- Spectral mixture analysis models each pixel as a linear mixture of endmember spectra
 - Green (photosynthetic) vegetation
 - Non-photosynthetic vegetation
 - Soil
 - Shade
- Lab spectra were used to find endmembers from a multitemporal spectral library of AVIRIS image spectra
- Selection was based on RMSE for modeling library, brightness
- GV, NPV, and soil fractions were shade normalized

Liquid Water Thickness

- ATREM-based atmospheric correction for AVIRIS-C (Thompson, Gao, et al.)
- Water vapor correction is improved by estimating column absorption by all three phases of water
 - Water vapor
 - Liquid water
 - Ice
- Liquid water thickness retrieved by three-phase algorithm provides a measure of canopy water content

Santa Barbara Box 6 June 2013

6 June 2013 NPV GV Soil

25 Nov 2013 NPV GV Soil

16 April 2014 NPV GV Soil

ΔNPV fraction 11 Apr 13-6 Jun 13

11 April 2013 Liquid Water, 0-2.5mm

Results

- NPV fraction increased and liquid water decreased from April 2013 through November 2013
 - June changes: Senesced grasslands/coastal sage scrub, some dieback in chaparral canopies
 - Changes by November: Extensive dieback in chaparral canopies
- Rainfall in spring 2014 allowed some recovery
 - Decreased NPV, increased liquid water
 - Recovery was limited in some areas

Multiple Endmember Spectral Mixture Analysis (MESMA) can be used to map dominant species cover

 Within-species changes in fractions can be examined for spatial variation in phenology and response to drought

Multi-temporal classification

Dudley et al.

Conclusions, Questions, and Continuing Work

- Increases in NPV and decreases in liquid water coincide with seasonal and long-term drought
- Chamise and Ceanothus exhibit different responses to longterm drought, spring rainfall event
- Does chaparral dieback continue into summer and fall 2014? Are gains from spring 2014 rain temporary? How does vegetation status in fall 2014 compare to fall 2013?
- Which species show signs of rapid recovery when (or if) precipitation returns? Where is mortality occurring?
- Is agricultural productivity in the Central Valley reduced? i.e., are they still irrigating?
- What can we learn about evapotranspiration through combined VSWIR and TIR (MASTER) measurements?

dennison@geog.utah.edu