Real-time detection of methane plumes by AVIRISng

David R. Thompson1, Robert O. Green1, Michael Eastwood1, Ira Leifer2

1Jet Propulsion Laboratory, California Institute of Technology
2University of California, Santa Barbara

Copyright 2014 California Institute of Technology. This research has been performed at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. NASA programmatic support through ESTO and Terrestrial Ecology programs is gratefully acknowledged.
Agenda

- Why real-time?
- Prior studies
- Our approach
 - Comparison of methods
 - Operational application
- Future directions
Why real-time remote sensing?
Why real-time remote sensing?

In flight: Provide tactical feedback to pilots

[Image of oil pumpjack and CH₄ plume]
Post-flight trace gas detection

Unambiguous source attribution

Reveal plume structure

CH$_4$ signal (SNR)
Some prior work in real-time remote sensing

- Cloud detection [Thompson et al., *TGRS 2014*, Altinok et al. (in review)]
- Endmember detection [Thompson et al., *TGRS 2013*]
- Spectral band ratios by EO-1 [Chien et al., 2005]
Some prior work in trace gas detection

- Trace gas detection in marine seeps [Thorpe et al., *RSE* 2013, Roberts et al., *RSE* 2010]
- CO₂ [Dennison et al., *RSE* 2013]
- Band Ratios [Bradley et al., *GRL* 2011]
- ... and many others

Thorpe et al., SPIE 2012
Agenda

• Why real-time?

• Prior studies

• Our approach
 – Comparison of methods
 – Operational application

• Future directions
Target CH$_4$ signal

CH$_4$ transmittance (modeled)

Transmittance

Wavelength (microns)
Kern River Oil Field, Bakersfield
Three detection methods

Continuum-Interpolated Band Ratio
Matched filter
Columnwise matched filter

Increasing computational complexity
Continuum Interpolated Band Ratio (CIBR)

Calculate for each absorption "spike"

$$R_{CIBR} = \frac{L_m}{\omega_r L_r + \omega_r \omega_r L_r}$$

Transmittance

Wavelength (microns)
In-flight detections (examples)
Validation methods

(in plume) / (out of plume) ratio vs. modeled transmittance

Ratio vs. modeled transmittance
Can we do better?
Matched filter detection

• Decide between hypotheses:

 \(H_0 \) : \(x \sim N(\mu, \Sigma) \)
 \(H_1 \) : \(x \sim N(\mu + \alpha t, \Sigma) \)

• Optimal decision rule:

\[
\alpha(x) = \frac{(t - \hat{\mu})^T \hat{\Sigma}^{-1} (x - \hat{\mu})}{\sqrt{(t - \hat{\mu})^T \hat{\Sigma}^{-1} (t - \hat{\mu})}}
\]
A columnwise matched filter

Buffer blocks of 2000 lines, Apply one matched filter per column

Advantages
• Completely removes striping

Challenges
• Just 2000 samples to estimate the 100x100 covariance matrix
• We must invert the matrix once per column
Dominant mode suppression
[Manolakis et al., 2009]

1. Decompose covariance matrix (SVD)

\[\Sigma = \sum_{i=1}^{p} \lambda_i q_i q_i^T \]

Advantages: few parameters, stable, fast.

Regularized versions use diagonal loading

2. Approximate the inverse using just the top \(d \) eigenvalues

\[\tilde{\Sigma}^{-1} = \frac{1}{\alpha} \left[I - \sum_{i=1}^{d} \left(\frac{\lambda_i - \alpha}{\lambda_i} \right) q_i q_i^T \right] \]

\[\alpha = \frac{1}{p - d} \left(\text{tr}\Sigma - \sum_{i=1}^{d} \lambda_i \right) \]

Advantages: few parameters, stable, fast.

Regularized versions use diagonal loading
Real time implementation

- Recording process
 - SSD RAID
 - Raw instrument data
 - CH4 data
 - Master CPU process
 - Radiance spectra
 - Combine columns
- Parallel Multicore Detection (CPU)
 - Signal library
 - Matched filter, column 1
 - Matched filter, column 2
 - Matched filter, column 600

- Matched filter, column 600
- Spectrometer
- Direction of flight
Example

Before

After
Conclusions

• We demonstrated detection of methane plumes in real time
• A columnwise matched filter performs real time CH$_4$ detection at 500MB/s
• Next steps:
 – Refine target signature (use Jacobians?)
 – Automatic geolocalization
 – Quantify sensitivity?
Thanks!

Christian Frankenberg, Andrew Thorpe, Andrew Aubrey, Dar Roberts. Didier Keymeulen, Brian Bue, Sarah Lundeen, Mark Helmlinger, Scott Nolte and the AVIRIS-NG team…

This research has been performed at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. NASA programmatic support through ESTO and Terrestrial Ecology programs is gratefully acknowledged.