Observing and modeling biodiversity

Ryan Pavlick, JPL/Caltech 14 Oct 2014 Hyspiri Science and Applications Workshop

Ecological theory can get us part of the way there.

Ecological theory can get us part of the way there.

Spaceborne imaging spectroscopy can take us the rest of the way.

Real World

350,000+ plant species

Immense functional diversity

Adaptive

Real World

Current modeling paradigm

350,000+ plant species

Immense functional diversity

Adaptive

Abstracted to ~10 Plant Functional Types (PFTs)

Relatively sparse

Static

Source: Wikimedia

Experimental and theoretical ecology

Source: bgc-jena.mpg.de

Diversity enhances productivity, lowers temporal variability, increases ecosystem resilience to change

Experimental and theoretical ecology

Source: bgc-jena.mpg.de

Diversity enhances productivity, lowers temporal variability, increases ecosystem resilience to change

Current global models

Source: Heimann and Reichstein 2008, Friedlingstein et al. 2006

Some PFT-based models predict catastrophic positive feedbacks, e.g. Amazon dieback (Cox et al. 2000)

Source: Van Bodegom et al. (2012)

PFTs

- BOREAL FOREST
- * DESERT
- SAVANNA
- ▽ TEMPERATE FOREST
- ◇ TEMPERATE WET FOREST
- × TROPICAL DRY FOREST
- + TROPICAL WET FOREST
- △ TUNDRA
- · WOODLAND/GRASSLAND

Source: Van Bodegom et al. (2012)

log10 (Leaf Nitrogen mass Concentration (%))

0.2

0.4

0.6

-0.6

log10 (Leaf Nitrogen mass Concentration (%))

Ecological theory can get us part of the way there.

Functional tradeoffs

Functional tradeoffs

Pavlick et al (2013) Biogeosciences

Jena Diversity (JeDi) DGVM

many possible strategies

- relative allocation
- phenology
- plant physiology

Jena Diversity (JeDi) DGVM

- relative allocation
- phenology
- plant physiology

- survival
- biomass
- fluxes

Jena Diversity (JeDi) DGVM

- relative allocation
- phenology
- plant physiology

- survival
- biomass
- fluxes

Jena Diversity (JeDi) DGVM

- relative allocation
- phenology
- plant physiology

- biomass
- fluxes

Comparing diverse and PFT-like approaches

Diverse approach

Community-weighted traits

Comparing diverse and PFT-like approaches

Diverse approach

PFT-like approach

Diversity = Higher productivity

Diverse approach = Lower temporal variability

Mathematically inevitable due to averaging and negative covariance effects.

In agreement with field/lab experiments and previous theoretical models.

Diverse approach = Greater resilience

Diverse approach = Greater resilience

Large sensitivity >400 PgC

Ecological theory can get us part of the way there.

Spaceborne imaging spectroscopy can take us the rest of the way.

Big data gap

Remote sensing can fill the gap

Ecological theory can get us part of the way there.

Spaceborne imaging spectroscopy can take us the rest of the way.

Observing Biodiversity from Space

- NCEAS working group funded by NASA
- First workshop in December 2014, second in mid-2015
- Broad group of experts from the biodiversity/ macroecology, remote sensing, plant functional trait/ecosystem modelling, and informatics communities

Observing Biodiversity from Space

- What can we learn about biodiversity and evolution by characterizing global patterns of functional diversity with remote sensing?
- What impact will a comprehensive global data set on functional diversity have on global terrestrial ecosystem models?

Observing Biodiversity from Space

- Perspective article arguing the urgent need for truly global biodiversity observations and the steps needed to integrate that data with existing biodiversity data sources
- Case study using existing airborne imagery across multiple biomes processed in to L3 data product
- An outline of a curriculum for a spectroscopy summer school for ecologists

Spectroscopy Summer School

Stable Isotope Biogeochemistry & Ecology

Started 1996, hundreds of alumni across many disciplines

In its eighth year, also highly succesful at increasing the pool of scientists trained in flux techniques

ISS Synergy

OCO-3 -- Fluorescence ECOSTRESS -- Thermal

GEDI -- Lidar

VSWIR?