Generation of OLI data products Onboard Earth Observing One: A Preliminary Report

Steve Chien, Jay Torres, Daniel Tran, David R. Thompson, Robert Green, Jet Propulsion Laboratory, California Institute of Technology

Daniel Mandl, Elizabeth Middleton, Stephen Ungar, Lawrence Ong, Petya Campbell, NASA GSFC

Bruce Trout, Jerry Hengemihle, Microtel LLC

Portions of this work were performed by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration
Goals

- **General**: Demonstrate that hyperspectral data can be used to synthesize multispectral data onboard.
- **Specific**: Demonstrate that Hyperion Hyperspectral data can be used to synthesize OLI multispectral data onboard.
Approach

• Utilize existing capabilities
 – ASE includes
 • Onboard Hyperion Data Analysis
 • Onboard mission re-planning
 • Onboard execution
ASE Usage

• ASE onboard instrument processing used to demonstrate onboard:
 – Surface water extent mapping (Flood detection)
 – Cryosphere tracking (Snow, Water, Ice, Cloud, Land)
 – Thermal Analysis (Volcano, Wildfire)

• Over 5000 onboard products generated 2004-present [Chien et al. 2013 JSTARS]
ASE Instrument Data Processing

• Band stripping capability
 – Implemented by Microtel
 – Enables band stripping of 12 Hyperion Bands
 • Must include at least 1 SWIR and 1 VNIR band
 • Strips out 1024 x 256 pixel image
 • Requires ~ 20 minutes to strip
 – ASE provides
 • Standard interface for accessing the stripped data
 • Standard interface to output data product
 • Data is then downlinked via s-band
Implementation Steps

- Identify selected Hyperion Bands
- Compile out as much computation as possible
- Validate convolution algorithms on ground
 - Convolve ALI data to assist in validation
- Implement to ASE interface spec
- Validate in ground testbeds
- Upload and flight validate
- Operations within current ASE operations framework – no significant disruption to EO-1 operations
Operations Constraints

• Only 12 bands (1 SWIR 1 VNIR)
 – Will need to demonstrate OLI band convolution with not all OLI bands form a single band strip
• WARP contention constraint
 – WARP playback (band stripping) and WARP writing (image acquisition) cannot overlap
In-Band Band-Average Relative Spectral Response

relative spectral response []

wavelength [nm]

relative to radiance
Hyperion / OLI Coastal/Aerosol Band Comparison

<table>
<thead>
<tr>
<th>Hyperion Band</th>
<th>Average λ (nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>B8</td>
<td>426.8200</td>
</tr>
<tr>
<td>B9</td>
<td>436.9900</td>
</tr>
<tr>
<td>B10</td>
<td>447.1700</td>
</tr>
<tr>
<td>B11</td>
<td>457.3400</td>
</tr>
</tbody>
</table>

![Graph showing relative response vs. wavelength with data points and curves for Hyperion and OLI bands.](image-url)
Hyperion / OLI Coastal/Aerosol Band Comparison

In-Band Band-Average RSR

<table>
<thead>
<tr>
<th>Hyperion Band</th>
<th>Average λ (nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>B8</td>
<td>426.8200</td>
</tr>
<tr>
<td>B9</td>
<td>436.9900</td>
</tr>
<tr>
<td>B10</td>
<td>447.1700</td>
</tr>
<tr>
<td>B11</td>
<td>457.3400</td>
</tr>
</tbody>
</table>
Hyperion / OLI Blue Band Comparison
In-Band Band-Average RSR

<table>
<thead>
<tr>
<th>Hyperion Band</th>
<th>Average Wavelength (nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>B8</td>
<td>426.8200</td>
</tr>
<tr>
<td>B9</td>
<td>436.9900</td>
</tr>
<tr>
<td>B10</td>
<td>447.1700</td>
</tr>
<tr>
<td>B11</td>
<td>457.3400</td>
</tr>
</tbody>
</table>

Relative Response

- OLI
- Hyperion
- Convolution
- B9_Gauss
- B10_Gauss
Hyperion / OLI Blue Band Comparison
In-Band Band-Average RSR

<table>
<thead>
<tr>
<th>Hyperion Band</th>
<th>Average λ (nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>B16</td>
<td>508.2200</td>
</tr>
<tr>
<td>B17</td>
<td>518.3900</td>
</tr>
<tr>
<td>B18</td>
<td>528.5700</td>
</tr>
<tr>
<td>B19</td>
<td>538.7400</td>
</tr>
<tr>
<td>B20</td>
<td>548.9200</td>
</tr>
<tr>
<td>B21</td>
<td>559.0900</td>
</tr>
<tr>
<td>B22</td>
<td>569.2700</td>
</tr>
<tr>
<td>B23</td>
<td>579.4500</td>
</tr>
<tr>
<td>B24</td>
<td>589.6200</td>
</tr>
<tr>
<td>B25</td>
<td>599.8000</td>
</tr>
<tr>
<td>B26</td>
<td>609.9700</td>
</tr>
<tr>
<td>B27</td>
<td>620.1500</td>
</tr>
</tbody>
</table>
Hyperion / OLI Blue Band Comparison
In-Band Band-Average RSR

<table>
<thead>
<tr>
<th>Hyperion Band</th>
<th>Average Wavelength (nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>B16</td>
<td>508.2200</td>
</tr>
<tr>
<td>B17</td>
<td>518.3900</td>
</tr>
<tr>
<td>B18</td>
<td>528.5700</td>
</tr>
<tr>
<td>B19</td>
<td>538.7400</td>
</tr>
<tr>
<td>B20</td>
<td>548.9200</td>
</tr>
<tr>
<td>B21</td>
<td>559.0900</td>
</tr>
<tr>
<td>B22</td>
<td>569.2700</td>
</tr>
<tr>
<td>B23</td>
<td>579.4500</td>
</tr>
<tr>
<td>B24</td>
<td>589.6200</td>
</tr>
<tr>
<td>B25</td>
<td>599.8000</td>
</tr>
<tr>
<td>B26</td>
<td>609.9700</td>
</tr>
<tr>
<td>B27</td>
<td>620.1500</td>
</tr>
</tbody>
</table>

Relative response comparison between Hyperion and OLI Blue Band with band-average response surface ratio (RSR) convolution.
Hyperion / OLI Green Band Comparison

In-Band Band-Average RSR

<table>
<thead>
<tr>
<th>Hyperion Band</th>
<th>Average Wavelength (nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>B16</td>
<td>508.2200</td>
</tr>
<tr>
<td>B17</td>
<td>518.3900</td>
</tr>
<tr>
<td>B18</td>
<td>528.5700</td>
</tr>
<tr>
<td>B19</td>
<td>538.7400</td>
</tr>
<tr>
<td>B20</td>
<td>548.9200</td>
</tr>
<tr>
<td>B21</td>
<td>559.0900</td>
</tr>
<tr>
<td>B22</td>
<td>569.2700</td>
</tr>
<tr>
<td>B23</td>
<td>579.4500</td>
</tr>
<tr>
<td>B24</td>
<td>589.6200</td>
</tr>
<tr>
<td>B25</td>
<td>599.8000</td>
</tr>
<tr>
<td>B26</td>
<td>609.9700</td>
</tr>
</tbody>
</table>
Hyperion / OLI Green Band Comparison

In-Band Band-Average RSR

<table>
<thead>
<tr>
<th>Hyperion Band</th>
<th>Average Wavelength (nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>B16</td>
<td>508.2200</td>
</tr>
<tr>
<td>B17</td>
<td>518.3900</td>
</tr>
<tr>
<td>B18</td>
<td>528.5700</td>
</tr>
<tr>
<td>B19</td>
<td>538.7400</td>
</tr>
<tr>
<td>B20</td>
<td>548.9200</td>
</tr>
<tr>
<td>B21</td>
<td>559.0900</td>
</tr>
<tr>
<td>B22</td>
<td>569.2700</td>
</tr>
<tr>
<td>B23</td>
<td>579.4500</td>
</tr>
<tr>
<td>B24</td>
<td>589.6200</td>
</tr>
<tr>
<td>B25</td>
<td>599.8000</td>
</tr>
<tr>
<td>B26</td>
<td>609.9700</td>
</tr>
</tbody>
</table>
Hyperion / OLI Red Band Comparison
In-Band Band-Average RSR

<table>
<thead>
<tr>
<th>Hyperion Band</th>
<th>Average λ (nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>B27</td>
<td>620.1500</td>
</tr>
<tr>
<td>B28</td>
<td>630.3200</td>
</tr>
<tr>
<td>B29</td>
<td>640.5000</td>
</tr>
<tr>
<td>B30</td>
<td>650.6700</td>
</tr>
<tr>
<td>B31</td>
<td>660.8500</td>
</tr>
<tr>
<td>B32</td>
<td>671.0200</td>
</tr>
<tr>
<td>B33</td>
<td>681.2000</td>
</tr>
<tr>
<td>B34</td>
<td>691.3700</td>
</tr>
</tbody>
</table>
Hyperion / OLI Red Band Comparison
In-Band Band-Average RSR

<table>
<thead>
<tr>
<th>Hyperion Band</th>
<th>Average λ (nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>B27</td>
<td>620.1500</td>
</tr>
<tr>
<td>B28</td>
<td>630.3200</td>
</tr>
<tr>
<td>B29</td>
<td>640.5000</td>
</tr>
<tr>
<td>B30</td>
<td>650.6700</td>
</tr>
<tr>
<td>B31</td>
<td>660.8500</td>
</tr>
<tr>
<td>B32</td>
<td>671.0200</td>
</tr>
<tr>
<td>B33</td>
<td>681.2000</td>
</tr>
<tr>
<td>B34</td>
<td>691.3700</td>
</tr>
</tbody>
</table>
Hyperion / OLI NIR Band
In-Band Band-Average RSR

<table>
<thead>
<tr>
<th>Hyperion Band</th>
<th>Average Wavelength (nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>B47</td>
<td>823.6500</td>
</tr>
<tr>
<td>B48</td>
<td>833.8300</td>
</tr>
<tr>
<td>B49</td>
<td>844.0000</td>
</tr>
<tr>
<td>B71</td>
<td>851.9200</td>
</tr>
<tr>
<td>B50</td>
<td>854.1800</td>
</tr>
<tr>
<td>B72</td>
<td>862.0100</td>
</tr>
<tr>
<td>B51</td>
<td>864.3500</td>
</tr>
<tr>
<td>B73</td>
<td>872.1000</td>
</tr>
<tr>
<td>B52</td>
<td>874.5300</td>
</tr>
<tr>
<td>B74</td>
<td>882.1900</td>
</tr>
<tr>
<td>B53</td>
<td>884.7000</td>
</tr>
<tr>
<td>B75</td>
<td>892.2800</td>
</tr>
<tr>
<td>B54</td>
<td>894.8800</td>
</tr>
<tr>
<td>B76</td>
<td>902.3600</td>
</tr>
<tr>
<td>Hyperion Band</td>
<td>Average Wavelength (nm)</td>
</tr>
<tr>
<td>---------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>B47</td>
<td>823.6500</td>
</tr>
<tr>
<td>B48</td>
<td>833.8300</td>
</tr>
<tr>
<td>B49</td>
<td>844.0000</td>
</tr>
<tr>
<td>B50</td>
<td>854.1800</td>
</tr>
<tr>
<td>B51</td>
<td>864.3500</td>
</tr>
<tr>
<td>B52</td>
<td>874.5300</td>
</tr>
<tr>
<td>B53</td>
<td>884.7000</td>
</tr>
<tr>
<td>B54</td>
<td>894.8800</td>
</tr>
<tr>
<td>B55</td>
<td>902.3600</td>
</tr>
<tr>
<td>B61</td>
<td>829.0000</td>
</tr>
<tr>
<td>B62</td>
<td>831.0000</td>
</tr>
<tr>
<td>B63</td>
<td>833.0000</td>
</tr>
<tr>
<td>B64</td>
<td>835.0000</td>
</tr>
<tr>
<td>B65</td>
<td>837.0000</td>
</tr>
<tr>
<td>B66</td>
<td>839.0000</td>
</tr>
<tr>
<td>B67</td>
<td>841.0000</td>
</tr>
<tr>
<td>B68</td>
<td>843.0000</td>
</tr>
<tr>
<td>B69</td>
<td>845.0000</td>
</tr>
<tr>
<td>B70</td>
<td>847.0000</td>
</tr>
<tr>
<td>B71</td>
<td>849.0000</td>
</tr>
<tr>
<td>B72</td>
<td>851.0000</td>
</tr>
<tr>
<td>B73</td>
<td>853.0000</td>
</tr>
<tr>
<td>B74</td>
<td>855.0000</td>
</tr>
<tr>
<td>B75</td>
<td>857.0000</td>
</tr>
<tr>
<td>B76</td>
<td>859.0000</td>
</tr>
<tr>
<td>B77</td>
<td>861.0000</td>
</tr>
<tr>
<td>B78</td>
<td>863.0000</td>
</tr>
<tr>
<td>B79</td>
<td>865.0000</td>
</tr>
<tr>
<td>B80</td>
<td>867.0000</td>
</tr>
<tr>
<td>B81</td>
<td>869.0000</td>
</tr>
<tr>
<td>B82</td>
<td>871.0000</td>
</tr>
<tr>
<td>B83</td>
<td>873.0000</td>
</tr>
<tr>
<td>B84</td>
<td>875.0000</td>
</tr>
<tr>
<td>B85</td>
<td>877.0000</td>
</tr>
<tr>
<td>B86</td>
<td>879.0000</td>
</tr>
<tr>
<td>B87</td>
<td>881.0000</td>
</tr>
<tr>
<td>B88</td>
<td>883.0000</td>
</tr>
<tr>
<td>B89</td>
<td>885.0000</td>
</tr>
<tr>
<td>B90</td>
<td>887.0000</td>
</tr>
<tr>
<td>B91</td>
<td>889.0000</td>
</tr>
<tr>
<td>B92</td>
<td>891.0000</td>
</tr>
<tr>
<td>B93</td>
<td>893.0000</td>
</tr>
<tr>
<td>B94</td>
<td>895.0000</td>
</tr>
<tr>
<td>B95</td>
<td>897.0000</td>
</tr>
<tr>
<td>B96</td>
<td>899.0000</td>
</tr>
</tbody>
</table>
Hyperion / OLI Cirrus Band Comparison
In-Band Band-Average RSR

<table>
<thead>
<tr>
<th>Hyperion Band</th>
<th>Average Wavelength (nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>B119</td>
<td>1336.1500</td>
</tr>
<tr>
<td>B120</td>
<td>1346.2500</td>
</tr>
<tr>
<td>B121</td>
<td>1356.3500</td>
</tr>
<tr>
<td>B122</td>
<td>1366.4500</td>
</tr>
<tr>
<td>B123</td>
<td>1376.5500</td>
</tr>
<tr>
<td>B124</td>
<td>1386.6500</td>
</tr>
<tr>
<td>B125</td>
<td>1396.7400</td>
</tr>
<tr>
<td>B126</td>
<td>1406.8400</td>
</tr>
<tr>
<td>B127</td>
<td>1416.9400</td>
</tr>
</tbody>
</table>
Hyperion / OLI SWIR1 Band Comparison
In-Band Band-Average RSR

<table>
<thead>
<tr>
<th>Hyperion Band</th>
<th>Average Wavelength (nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>B136</td>
<td>1507.7300</td>
</tr>
<tr>
<td>B137</td>
<td>1517.8300</td>
</tr>
<tr>
<td>B138</td>
<td>1527.9200</td>
</tr>
<tr>
<td>B139</td>
<td>1537.9200</td>
</tr>
<tr>
<td>B140</td>
<td>1548.0200</td>
</tr>
<tr>
<td>B141</td>
<td>1558.1200</td>
</tr>
<tr>
<td>B142</td>
<td>1568.2200</td>
</tr>
<tr>
<td>B143</td>
<td>1578.3200</td>
</tr>
<tr>
<td>B144</td>
<td>1588.4200</td>
</tr>
<tr>
<td>B145</td>
<td>1598.5100</td>
</tr>
<tr>
<td>B146</td>
<td>1608.6100</td>
</tr>
<tr>
<td>B147</td>
<td>1618.7100</td>
</tr>
<tr>
<td>B148</td>
<td>1628.8100</td>
</tr>
<tr>
<td>B149</td>
<td>1638.9100</td>
</tr>
<tr>
<td>B150</td>
<td>1648.9000</td>
</tr>
<tr>
<td>B151</td>
<td>1659.0000</td>
</tr>
<tr>
<td>B152</td>
<td>1669.1000</td>
</tr>
<tr>
<td>B153</td>
<td>1679.2000</td>
</tr>
<tr>
<td>B154</td>
<td>1689.3000</td>
</tr>
<tr>
<td>B155</td>
<td>1699.4000</td>
</tr>
</tbody>
</table>
Hyperion / OLI SWIR2 Band Comparison
In-Band Band-Average RSR

<table>
<thead>
<tr>
<th>Hyperion Band</th>
<th>Average Wavelength (nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>B187</td>
<td>2022.2500</td>
</tr>
<tr>
<td>B188</td>
<td>2032.3500</td>
</tr>
<tr>
<td>B189</td>
<td>2042.4500</td>
</tr>
<tr>
<td>B190</td>
<td>2052.5500</td>
</tr>
<tr>
<td>B191</td>
<td>2062.6500</td>
</tr>
<tr>
<td>B192</td>
<td>2072.7500</td>
</tr>
<tr>
<td>B193</td>
<td>2082.8500</td>
</tr>
<tr>
<td>B194</td>
<td>2092.9500</td>
</tr>
<tr>
<td>B195</td>
<td>2103.0500</td>
</tr>
<tr>
<td>B196</td>
<td>2113.1500</td>
</tr>
<tr>
<td>B197</td>
<td>2123.2500</td>
</tr>
<tr>
<td>B198</td>
<td>2133.3500</td>
</tr>
<tr>
<td>B199</td>
<td>2143.4500</td>
</tr>
<tr>
<td>B200</td>
<td>2153.5500</td>
</tr>
<tr>
<td>B201</td>
<td>2163.6500</td>
</tr>
<tr>
<td>B202</td>
<td>2173.7500</td>
</tr>
<tr>
<td>B203</td>
<td>2183.8500</td>
</tr>
<tr>
<td>B204</td>
<td>2193.9500</td>
</tr>
<tr>
<td>B205</td>
<td>2204.0500</td>
</tr>
<tr>
<td>B206</td>
<td>2214.1500</td>
</tr>
<tr>
<td>B207</td>
<td>2224.2500</td>
</tr>
<tr>
<td>B208</td>
<td>2234.3500</td>
</tr>
<tr>
<td>B209</td>
<td>2244.4500</td>
</tr>
<tr>
<td>B210</td>
<td>2254.5500</td>
</tr>
<tr>
<td>B211</td>
<td>2264.6500</td>
</tr>
<tr>
<td>B212</td>
<td>2274.7500</td>
</tr>
<tr>
<td>B213</td>
<td>2284.8500</td>
</tr>
<tr>
<td>B214</td>
<td>2294.9500</td>
</tr>
<tr>
<td>B215</td>
<td>2305.0500</td>
</tr>
<tr>
<td>B216</td>
<td>2315.1500</td>
</tr>
<tr>
<td>B217</td>
<td>2325.2500</td>
</tr>
<tr>
<td>B218</td>
<td>2335.3500</td>
</tr>
<tr>
<td>B219</td>
<td>2345.4500</td>
</tr>
<tr>
<td>B220</td>
<td>2355.5500</td>
</tr>
<tr>
<td>B221</td>
<td>2365.6500</td>
</tr>
</tbody>
</table>

relative response vs. wavelength [nm]
Hyperion / OLI PAN Band Comparison
In-Band Band-Average RSR

<table>
<thead>
<tr>
<th>Hyperion Band</th>
<th>Average Wavelength (nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>B14</td>
<td>487.8700</td>
</tr>
<tr>
<td>B15</td>
<td>498.0400</td>
</tr>
<tr>
<td>B16</td>
<td>508.2200</td>
</tr>
<tr>
<td>B17</td>
<td>518.3900</td>
</tr>
<tr>
<td>B18</td>
<td>528.5700</td>
</tr>
<tr>
<td>B19</td>
<td>538.7400</td>
</tr>
<tr>
<td>B20</td>
<td>548.9200</td>
</tr>
<tr>
<td>B21</td>
<td>559.0900</td>
</tr>
<tr>
<td>B22</td>
<td>569.2700</td>
</tr>
<tr>
<td>B23</td>
<td>579.4500</td>
</tr>
<tr>
<td>B24</td>
<td>589.6200</td>
</tr>
<tr>
<td>B25</td>
<td>599.8000</td>
</tr>
<tr>
<td>B26</td>
<td>609.9700</td>
</tr>
<tr>
<td>B27</td>
<td>620.1500</td>
</tr>
<tr>
<td>B28</td>
<td>630.3200</td>
</tr>
<tr>
<td>B29</td>
<td>640.5000</td>
</tr>
<tr>
<td>B30</td>
<td>650.6700</td>
</tr>
<tr>
<td>B31</td>
<td>660.8500</td>
</tr>
<tr>
<td>B32</td>
<td>671.0200</td>
</tr>
<tr>
<td>B33</td>
<td>681.2000</td>
</tr>
<tr>
<td>B34</td>
<td>691.3700</td>
</tr>
<tr>
<td>B35</td>
<td>701.5500</td>
</tr>
</tbody>
</table>
Conclusions

• EO-1 mission has excellent supporting infrastructure to flight validate OLI product generation onboard
 – Hyperion has sufficient spectral resolution to synthesize OLI data
 – ASE FSW on EO-1 supports band stripping access to Hyperion data (with 12 band limitation)
 – Preliminary work to implement convolution, identify candidate relevant bands, overall design is complete
 – Flight validation can be executed with modest effort

• Future enhancement to band stripping could enable even further capability
 – Generation of more OLI bands within single pass
 – Downlink via WARP and X-band