

Sustainable land imaging requirements to monitor surface soil moisture with HyspIRI-like data

Michael Ramsey¹ and Stephen Scheidt²

¹Dept. of Geology and Planetary Science, University of Pittsburgh, Pittsburgh, PA ²Center for Earth & Planetary Studies, Smithsonian Institution, Washington, DC

Outline

Background

- importance of soil moisture
- relevant HyspIRI science questions
- what is TI/ATI and how is it measured?
 - examples

- Sustainable Measurements?
 - HyspIRI-specific possibilities

 limitations/synergies with other sensors (e.g., SMAP, Landsat, ...) and modeling approaches (e.g., ET/PET)

2014 HyspIRI Data Product Symposium

Soil Moisture Content (SMC)

Importance in a Changing Climate •

- soil moisture only represents ~0.05% of the global water budget
 - however, it has an disproportionate influence to its volume
 - fundamentally affects a variety of global climatic conditions
 - organic matter, aridity

> e.g., vegetation, ET, soil White Sands, NM (MODIS: 14 March 2008)

in semi-arid landscapes soil moisture changes can be more impactful and can increase the mobilization and entrainment of dust, for example

HyspIRI Relevant Science

TQ3: Water Use and Availability

 TQ3c: How can we improve early detection, mitigation, and impact assessment of droughts at local to global scales?

• as a *T*-question, the description focuses only on ET/PET

CQ5: Surface Composition and Change

- CQ5c: How is the composition of exposed terrestrial surface responding to anthropogenic and non anthropogenic drivers (e.g., desertification, seasonal/yearly climate change, weathering, disturbances)?
 - this C-question focuses only on the spectral mapping

- Measurements in Semi-Arid Lands
 - soils experience rapid drying following precipitation
 - importance of diurnal TIR measurements
 - low vegetation makes calculation of ET more reliant on soil emissivity/composition
 - field measurements over a large geographical region
 - are difficult and expensive
 - sensitive sensors to measure low water/high salinity soils
 - influence of SMC on soil mobility/erosion

Sevilleta National Wildlife Refuge (LTER Site)

U.S. Climate Reference Network (USCRN) sites

2014 HyspIRI Data Product Symposium NASA GSFC, MD (4 – 6 June 2014)

One Approach

- Thermophysical Properties
 - function of temperature differences and albedo
 - able to interpret diurnal to seasonal weather-related processes:
 - soil moisture content (SMC) → link to future SMAP data?
 - soil erosion potential in arid/semi-arid lands
 - consolidated vs. rocky soils, soil density/cohesion
 - <u>thermal inertia</u>: resistance of a material to change in temperature, I = (κρc)^{1/2}
 - <u>ATI:</u> apparent thermal inertia, $ATI = NC(1-A)/(T_d-T_n)$
 - a measure of the magnitude of the daily thermal curve moderated by albedo (A) and changes in solar flux with latitude and solar declination (N and C)

TI Modeling Approach

$$P = \frac{(1-a)S_0C_t}{\Delta T\sqrt{\omega}} \left\{ \frac{A_1 \left[\cos(\omega t_2 - \delta_1) - \cos(\omega t_1 - \delta_1) \right]}{\sqrt{1 + \frac{1}{b} + \frac{1}{2b^2}}} + \frac{A_2 \left[\cos(\omega t_2 - \delta_2) - \cos(\omega t_1 - \delta_2) \right]}{\sqrt{2 + \frac{\sqrt{2}}{b} + \frac{1}{2b^2}}} \right\}$$

Data Inputs

- **a** = albedo
- ΔT = temperature difference
- $t_n = day (n=1) and night (n=2) time$
- $\mathbf{S}_0 = solar \ constant$
- $\boldsymbol{\omega}$ = angular velocity of Earth
- $C_t = atmospheric transmissivity$
- $\boldsymbol{\delta}_n = phase \ difference^*$
- A_n = coefficient of Fourier series*

* values are dependent on solar declination, latitude, and maximum daytime temperature

Data Output

[Xue and Cracknell, 1995]

P: thermal inertia (J $m^{-2} K^{-1} s^{-1/2}$ or TIU) **ATI:** (1-a)/ ΔT

Sources of Error

albedo: dependent on instrument and calculation

△*T*: satellite overpasses are not at maximum and minimum diurnal temperatures

C_t: assumed to be constant or corrected *time*: overpass time: 36 hours for ASTER (potential error and in-scene variability, i.e., cloud, rain, etc.)

Case Study Example

- Examined ASTER apparent thermal inertia (ATI) at White Sands, NM
 - calculated over 8 years
 - understand the relationship between
 - ATI ↔ TI ↔ SMC ↔ sediment availability

- how are the differences in ATI over time explained for the same geographic area?
- what are the errors in a vegetation-limited system?
- can this approach determine SMC & sediment mobility?

ASTER Relative Albedo Changes

2014 HyspIRI Data Product Symposium

NASA GSFC, MD (4 – 6 June 2014)

Derived Thermal Inertia

2014 HyspIRI Data Product Symposium

NASA GSFC, MD (4 – 6 June 2014)

Derived SMC

range of soil moisture content (9% - 25%)

2014 HyspIRI Data Product Symposium NASA GSFC, MD (4 – 6 June 2014)

Derived Threshold Wind Velocity

time-averaged image of the unit less erosion threshold wind velocity ratio (u_{θ}^*/u_{d}^*)

2014 HyspIRI Data Product Symposium

NASA GSFC, MD (4 - 6 June 2014)

Derived Wind Threshold Velocity

White Sands: 14 March 2008

• Thermal Inertia \rightarrow SMC:

- day/night LST (multispectral TIR ideal)
 - < 100m spatial, < 36 hour temporal resolution</p>
 - better resolution of LST and surface composition
- day albedo (multi hyperspectral VSWIR)
 - < 60m spatial, ~ same time as LST_{day}
 - NDVI assessment for vegetation cover
- DEM availability
 - asses and remove topographic shadowing
- can be done with a variety of current/future sensors
- testing needed over a variety of surface types

Optical Sensors

- existing ASTER and new Landsat data
- use of higher temporal resolution VSWIR data combined with HyspIRI TIR
- Other Configurations
 - -ISS
 - precludes climate and solid earth science (especially at higher latitudes)
 - significant potential for soil moisture studies at mid-latitudes
 - > overpass times would vary over the course of the day
 - > allow temperature sampling at times excellent for ATI/TI based SMC studies

Microwave Sensors

- upcoming Soil Moisture Active Passive (SMAP)
 - SMC maps at 9 km several times seasonally
 - > for example, the White Sands eolian system is $\sim 26 \text{ km}^2$
 - o equates to ~80 SMAP pixels / ~190,000 HyspIRI pixels
 - limited in areas of steeper topography/higher latitudes
 - a unique synergy exists
 - > TIR data captures different scales
 - proposing to carry out cal/val testing of the TIR approach at SMAP calibration targets

- Retrieved TI, Soil Moisture, and Wind
 Threshold Velocity
 - at a high spatial resolution using ASTER
 - for eolian systems
 - soil moisture is the most important parameter where estimating sediment availability
 - values are slightly higher than would be expected for the dunes
 - > model needs further refinement and testing in other regions
 - > however, the general trends within the dunes and over time are valid
 - > detected a dramatic decrease in soil moisture in March 2008
 - several days before the largest dust storm at White Sands in over a decade (used as a monitoring tool with HyspIRI?)

sustainable land imaging notes

- 20 year period starting in 2018

2014 HyspIRI Data Product Symposium NASA GSFC, MD (4 – 6 June 2014)