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Introduction

We ask the question:

Can a single algorithm driven by hyperspectral satellite data
provide an estimate of carbon flux variables globally?

Why use a single algorithm?

Some MODIS products (such as LAI, fear, or GPP) use a land
cover classification as a first step to decide the
algorithm/coefficients used in the retrieval.

Accuracy of MODIS Collection 5 Land Cover Type product
(MCD12Q1) is estimated to be 75%

http://landval.gsfc.nasa.gov/ProductStatus.php?ProductiD=MOD12

Algorithms requiring land cover classification will have
guestionable results for the 25% mis-classified pixels



Remote Sensing of Fluxes: Hyperion and Fluxnet

* (Can statistical approaches use spectral information to adjust for site
differences but capture seasonal changes in flux variables?

* To address this question we examined a number of different sites
with different vegetation types throughout the year.

- Hyperion on EO-1 can provide consistent repeated observations of widely
distributed sites

- Spectra are averages of uniform regions around flux tower

 We combined satellite imagery with carbon flux data from the
AmeriFlux and CarboAfrica networks
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Light Use Efficiency Model

This study looks at the Light Use Efficiency (€) at midday (11:00 AM
to 1:00 PM local time)

GEP =€ farar PARin  OF
£ = GEP/(farar PARIn)

Where:

GEP is the gross ecosystem production
PARin is the incident Photosynthetically Active Radiation (PAR)

farar is the fraction of PAR absorbed by vegetation
e is the light use efficiency, the conversion factor between energy and absorbed
carbon
- In existing models ¢ is assighed a maximum value based on cover type
and downregulated based on responses to meteorological variables such
as temperature and humidity



Multitemporal Data for 5 Towers

Data collected in 2008-2009 (n = 47 total)

Duke Forest, NC_, USA Mongu, Zambia Konza Prairie,-K-S, USA
- Hardwood — n=5 - Miombo woodland —n=23 - 1allgrass Prairie

- Loblolly pine — n=5 - Two towers, each n=7




Seasonal Data

Seasonal change is described by Hyperion’s repeated observations
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e Black points — NDVI from MODIS N-bar
e Red and Green points — NDVI from
Hyperion bands convolved to MODIS

bands



Spectral Vegetation Indices

e Calculated 101 SVIs from Hyperion surface reflectance

e Compared with midday LUE using data from all sites
- TCARI performed best, R?=0.69
- Provides a baseline to compare with statistical approach
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Transformed Chlorophyll Absorption Ratio Index (TCARI)

TCARI = 3[(R700-R670)-0.2(R700-R550)(R700/R670)]
Kim et al. 1994

RMSE = 5494, R =0.83



Partial Least Squares Regression

PLSR uses information from all spectral bands (129 bands)
- Trained using random subsets from all sites
- Produces coefficients for every spectral band
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Partial Least Squares Regression

e PLSR produces great results for the training subsets
e R for all the test subsets are less than the best SVI (TCARI R=0.83)

- Poorer RMSE for the test subset data (TCARI RMSE = 5494)
e The average of the coefficients from all the subsets does slightly
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How extendable are the PLSR results?

e Use all the data for training PLSR

e Use Multisite dataset from previous study to test
- Muultisite dataset — 33 sites, n=79, only mid-growing season
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What caused the differences?

* PLSR coefficients failed because of differences in Hyperion reflectances due to

atmospheric correction
- Multisite data were processed with ATREM, Multitemporal data were

processed with ACORN
- An important consideration for spectral libraries
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PLSR can get reasonable results for all points combined

e Trained using all points from both Multitemporal and
Multisite datasets
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Conclusions

e A general approach for retrieval of biophysical variables
without classification may yet be possible
- Information from multiple spectral bands is required

e Statistical approaches like PLSR can be powerful tools for data
analysis and product generation
- Critically important to have good training data that
represents the full range of cases
- Differences in processing approaches may result in
significant errors

e Hyperion’s ability to provide multitemporal and multisite
observations makes it an important tool for pre-HysplRI
algorithm development and testing



