

Spectral analysis of biomass burning potassium emission signatures from current airborne to next generation hyperspectral missions.

> S. Amici, M.J. Wooster, M.F. Buongiorno

Istituto Nazionale di Geofisica e Vulcanologia Kings College London

forest fire in Nurallao, Sardinia in Cagliari province of Italy taken by Joseph Loddo

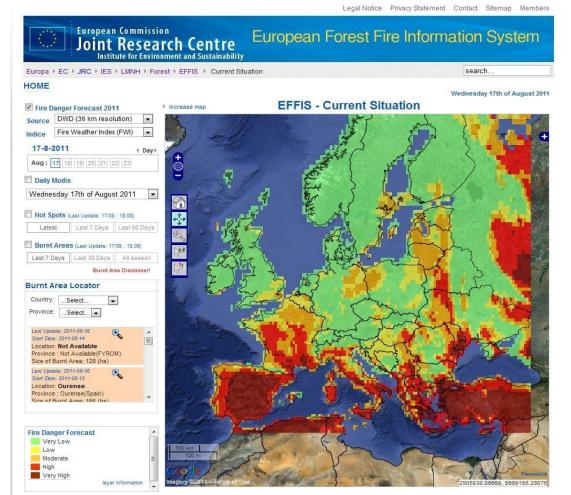
• PR • AS • Sp

ASI-AGI project Fire detection indeces for PRISMA

Overviev

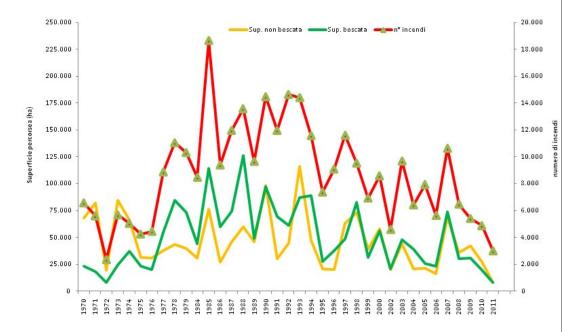
- Introduction
- PRISMA mission
- ASI-AGI project
- Spectral features of fires
- Fire localization by K emission
- Multiple scale approach
- Summary

Wildfire Europe


European Forest Fire Information System

Supporting the Member States in forecasting forest fire danger and assessing fire damage

Fires affect the global climate through processes such as trace gas and aerosol production, and by changes to terrestrial carbon dynamics.

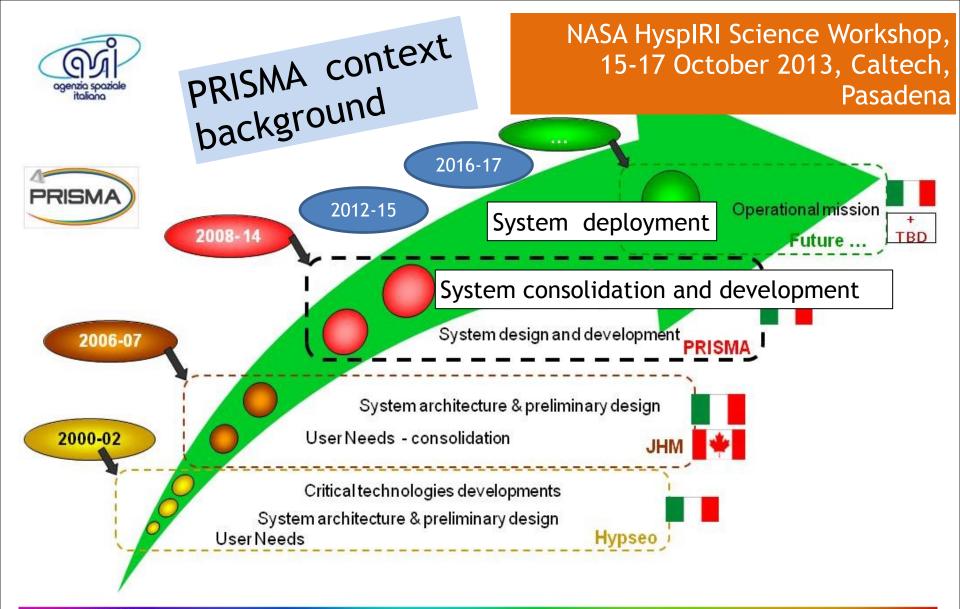

• Fires consume trees and other forest resources that may otherwise be harvested.

• Fires are a source of severe local air pollution for residents nearby.

- From January 2013:1.850 occurred in Italy
- Area: 13.630
 hectar=3368acres [6.370
 hectar=15740ac
 woodland and
 7.260hectar=17939ac no
 woodland.
- Up to 14 August 2013 high crisis level interested Puglia (356), Sardegna (262), Sicilia (242), Campania (183), Piemonte (106) e Calabria (98).

Lovreglio R et al. 2012

Data source: Corpo forestale dello Statottp:// www3.corpoforestale.it/

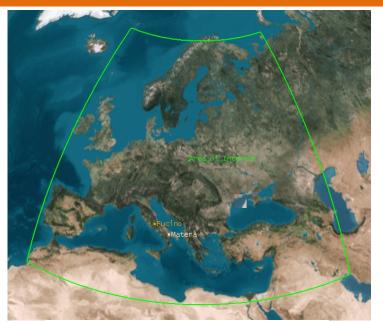

PRISMA (PRecursore IperSpettrale della Missione Applicativa) Hyperspectral Payload is an Electro-Optical instrument composed of a high spectral resolution spectrometer optically integrated with a medium resolution panchromatic camera.

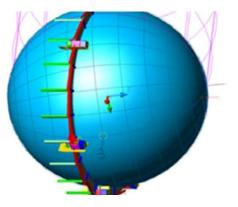
The instrument is the focus of the Earth Observation PRISMA mission, fully funded by ASI (Agenzia Spaziale Italiana) and developed by a consortium of Italian companies, lead by CGS as S/C responsible. PRISMA is: "a pre-operative small Italian hyperspectral mission, aiming to qualify the technology, contribute to develop applications and provide products to institutional and scientific users for environmental observation and risk management ..."

In this context SELEX Galileo has the full responsibility of the Electro-Optical Payload (**Hyperspectral and Pancromatic cameras**); in addition, SELEX Galileo provides the following items: a) PhotoVoltaic Assembly (PVA); b) Power Control & Distribution Unit (PCDU) for the S/C; c) AA-STR Autonomous Star Tracker for S/C attitude control and is also responsible of Data Products management (Level 0 and Level 1).

PRISMA Mission is based on previous experiences carried out by SELEX Galileo under ASI studies for Earth Observation, namely the programs HypSEO phase B (first study) and JHM (Joint Hyperspectral Mission) phase A (mission and instruments refinement).

The launcher baseline (which will be provided by the Agency) is **VEGA**, but the Mission design will be compatible also with other launchers to maintain the maximum flexibility.

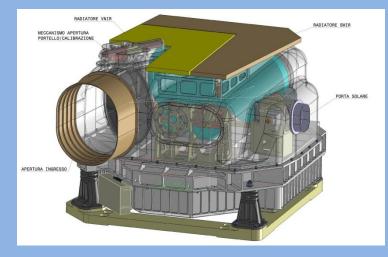

Program: PRISMA Event: Third Annual Hyperspectral Imaging Conference Topic: PRISMA Mission Date: Rome, 15 May 2012


This document contains proprietary information of ASI, and may not be reproduced, copied, disclosed or utilized in any way, in whole or in part, without the prior written consent of ASI.

Orbit	sun synchronous	
Orbital Altitude	615 Km	
Inclination	97.851°	
LTDN	10:30 a.m.	
Orbital period	about 97 min (5819.7 sec)	
Average eclipse duration	about 34 min (2048sec)	
Beta Angle	from 16.1 to 26.6 deg	
Repeat cycle	29 days (430 orbits)	
Relook time	7 days	
Area Of Interest (AoI)	longitude from 10°W to 50°E, latitude from 30°N to 70°N	
Outside Aol	40° latitude window per orbit at every latitude in the range 70°N – 60°S	
Swath / GSD	30 Km / 30m	
Off- Nadir	18.2°	
Aol access duration	Average Duration 8.44 min Maximum Duration 11.19 min	
Lifetime	5 years	

PRISMA Mission Overview

Instrument characteristics


Reference Orbit Altitude	615 Km	
Swath / FOV	30 Km / 2.77°	
GSD	Hyperspectral: 30 m	
GSD	PAN: 5 m	
Spatial Pixels	Hyperspectral: 1000	
	PAN: 6000	
Pixel Size	Hyperspectral: 30x30 μm	
	PAN: 6.5x6.5 μm	
Spectral Range	VNIR: 400 – 1010 nm	
	SWIR: 920 – 2500 nm	
Spectral Sampling Interval (SSI)	≤ 11 nm	
Spectral Width	≤ 12 nm	
Cross-Track Variation of Centre Wavelength (Smile)	< +/- 0.1 SSI	
Spatial registration of spectral sampling (incl. Keystone)	≤ 0.1 pixel	
Spectral Calibration Accuracy	+/-0.1 nm	
Radiometric Quantization	12 bit	
VNIR SNR	> 200:1 on 400 – 1000 nm	
	> 600:1 @ 650 nm	
	> 200:1 on 1000 – 1750 nm	
SWIR SNR	> 400:1 @ 1550 nm	
	> 100:1 on 1950 – 2350 nm	
	> 200:1 @ 2100 nm	
PAN SNR	> 240:1	
Absolute Radiometric Accuracy	Better than 5%	
Aperture Diameter	210 mm	
	VNIR @ Nyquist Frequency > 0.3	
MTF	SWIR @ Nyquist Frequency > 0.3	
	PAN @ Nyquist Frequency > 0.2	
Cooling System	Passive Radiator	
Lifetime	5 years	

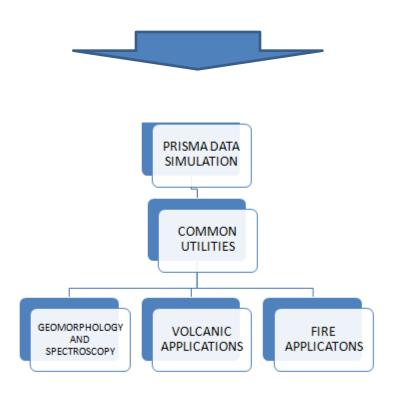
NASA HyspIRI Science Workshop, 15-17 October 2013, Caltech, Pasadena

- Area of interest:
 - Re-look time:
- < 7 days
- Response time:
- < 14 days

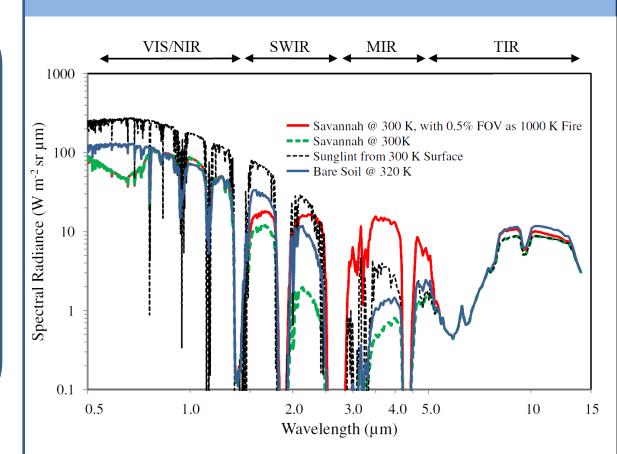
- Mission modes:
 - Primary: User driven
 - Secondary: Data driven (background mission)

Swath / FOV: 30 km / 2.45° Aperture diameter: 210mm Absolute radiometric accuracy: <5%

Courtesy of SELEX-GALILEO

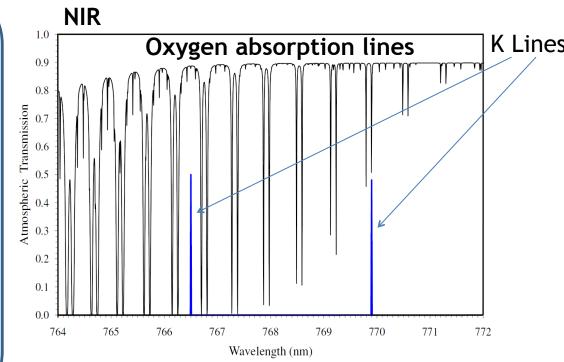


- National competition for 5 scientific projects
- Duration: 4 years
- 2 main tasks:
 - Research on specific theme reffering to the ASI list of applications using simil-PRISMA data and, after launch, PRISMA data
 - Scientific support to ASI PRISMA project team
- Identification of 5 Principal Investigators (PIs) in a Scientific Advisory Team
- Common Kick Off: 14/04/2011


Hyperspectral systems analisys for integrated geophysical applications (ASI-AGI) -INGV

Fire Energy Emissions

Thermal remote sensing studies of actively burning wildfires are usually based on the detection of Planckian energy emissions in the MIR (3-5 µm), LWIR (8-14 µm) and/or SWIR (1.0-2.5 µm) spectral regions

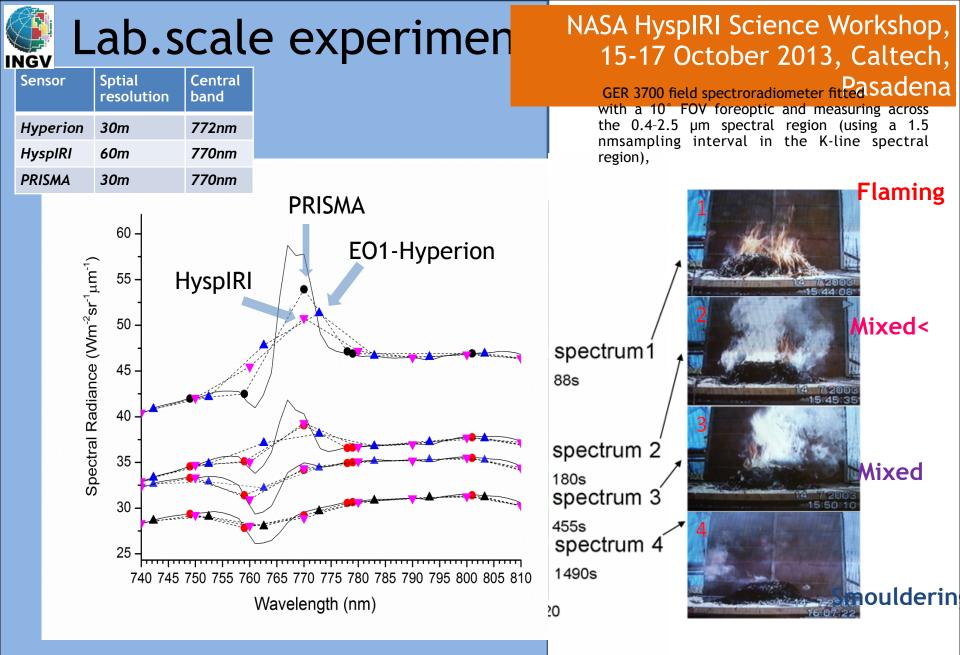


K emission

NASA HyspIRI Science Workshop, 15-17 October 2013, Caltech, Pasadena

Fuel biomass is largely composed of carbon (~50%), hydrogen (5.5%), oxygen (41%), and nitrogen (3.5%), and the molecular combustion products are dominantly CO_2 , H_2O , CO, CH_4 , and various nitrogenous compounds

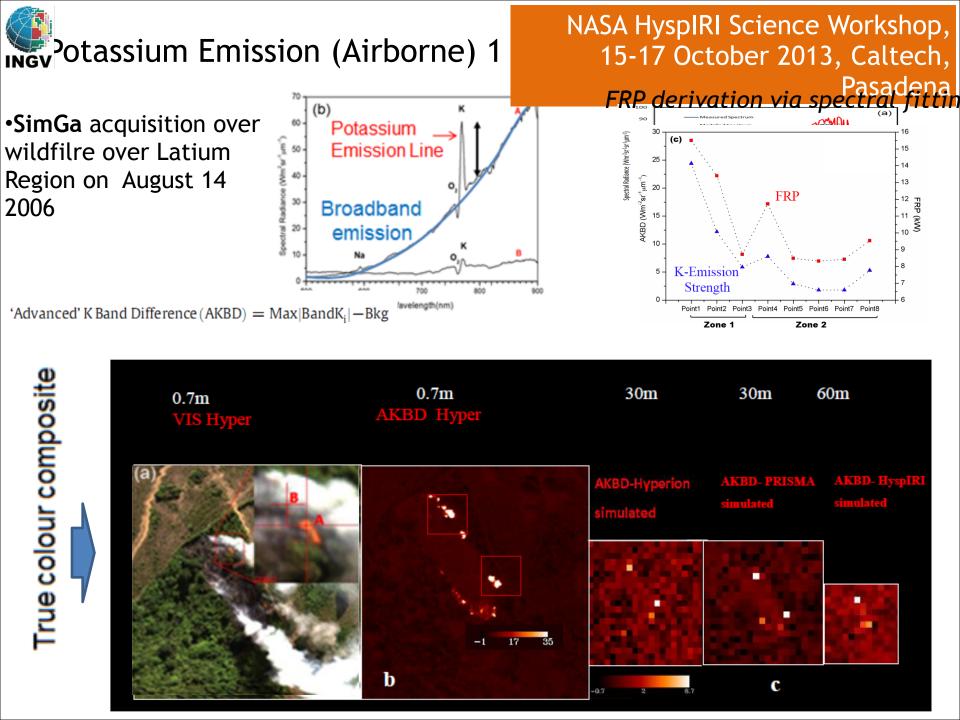
Levine, 1991) However, in addition to their primary C, H, O and N constituents, vegetation contains many trace elements and some of these (Na, K, P) display narrow and unique spectral emission lines when heated to high temperatures. The main trace element resulting in the appearance of spectral emission lines appears to be Potassium (K), with features at 766.5 nm and 769.9 nm



Potassium Emission Line (Simulation) Simulated Earh atmosphere. Transmission was calculated as viewing the Earth from100 kmelevation at nadir and assuming a US 1976 Standard Atmosphere and a 23 km rural aerosol. Simulation wasconducted at 0.1 cm-1 wavenumber resolution using the high spectral resolution mode of MODTRAN 5.2 (Berk et al., 2008)

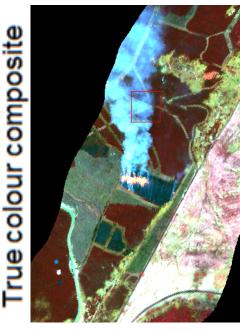
Multiple scale approach

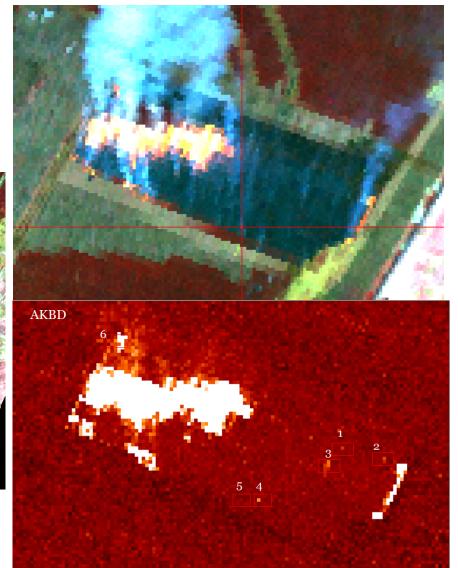
- Potassium Emission for forest fire localization at:
- Lab. Scale
- Airborne
- Satellite scale



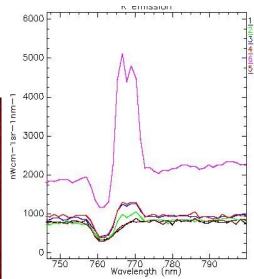
Airborne -satelute data set

- Sim.Ga (ITA)→ VIS 400-1000nm (spectral sampling 1.2nm), SWIR 1000-2400nm (5.4nm)
- ARSF(UK) → AISA-EAGLE,
 VNIR 400 970 nm, (spectral sampling 1.25 nm),

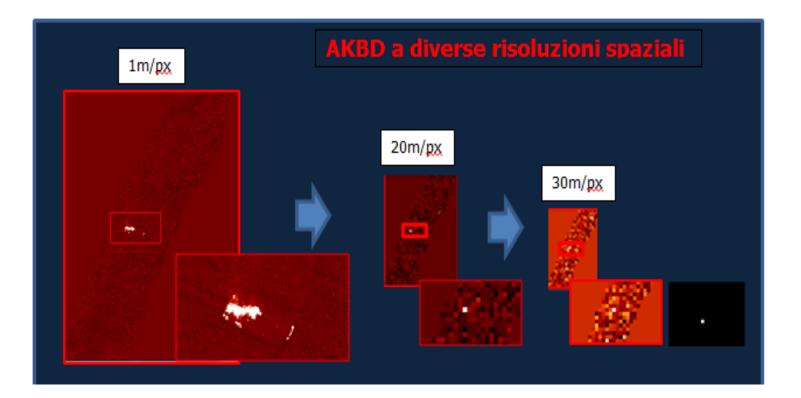

AISA -Hawk: 970nm 2500nm spectral sampling, 6.3 nm.



Potassium Emission (Airborne) 2


NASA HyspIRI Science Workshop, 15-17 October 2013, Caltech, Pasadena

•Eagle Aquisition over prescribed fire March 2010 Plot size di 80mx40m

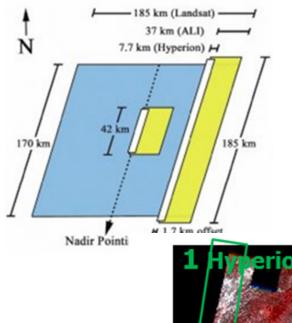


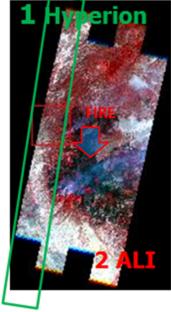
Plot size di 80mx40n

Eagle AKBD at different spatial resolution

Satellite scale:

Hyperion EO1-Hyperion [220 bands VNIR (70 bandsi, 356 nm - 1058 nm), SW (172) bands, 852 nm - 2577 nm), spatial resolution 30m, spectral rsolution 10nm,

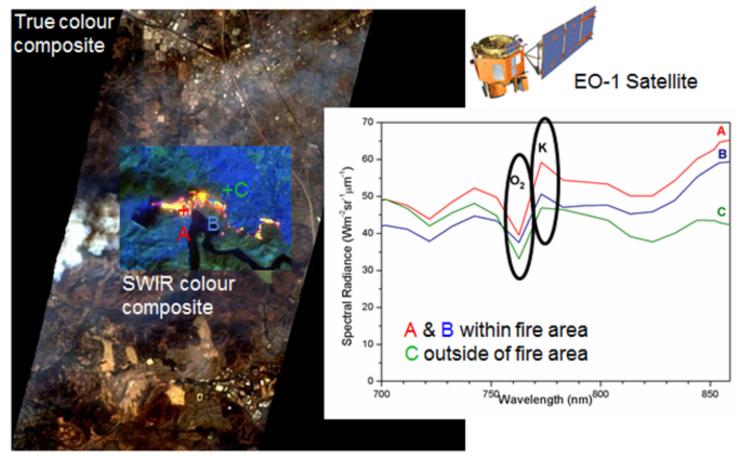

772nm, SNR 161 (550 nm); 147 (700 nm); 110 (1125 nm); 40 (2125


nm)

ASPEN Arizona	July 3 2003
Wedge Canyon	July 29, 2003.
California	October 23 2007
Russia	on May 24, 2011
Yakutsk Station fire Arcadia California	September 3, 2009

Data	Lat. Lon.	Località
1 luglio 2012	38.8° 104.9°	Waldo Canyon
12lluglio 2012	57.3° 91°	Krasnoyarsk (siberia)
5 luglio 2012	33.3° -108.9°	New Mexico
5 Aprile 2011	30.2° 95.8°	Texas
3 Dicembre 2010	32.7° 35.0°	South Haifa (Israel)

NASA HyspIRI Science Workshop, 15-17 October 2013, Caltech, Pasadena



otassium Emission (Satellite

NASA HyspIRI Science Workshop, 15-17 October 2013, Caltech, Pasadena

2007 "Witch" Wildfire (lat. 33.0 ° N, lon. 117.2 ° W)

Summary

NASA HyspIRI Science Workshop, 15-17 October 2013, Caltech, Pasadena

Atomic emission spectroscopy is a potential method for fire detection based on high spectral resolution NIR measures

K-emission signal from fires is unique, works day/night.

May provide info. related to fire emission source strength.

PRISMA sensor has spectral bands conviniently located for K emission detection.

Resolution increases fire localization for fire small fire. Further step consists in considering effect of sensor transfer function and atmosferic effects

Thanks for your attention!