Characterizing land surface energy budget under varying climatic conditions from AVIRIS and MASTER data

Shunlin Liang, Dongdong Wang Tao He, Qinqing Shi Department of Geographical Sciences University of Maryland, College Park

2013 HyspIRI Science Workshop Pasadena, CA. Oct 15-17 2013

Objectives

Quantification of the variations in land surface radiation and energy budget over different land cover types in response of climate variability from the AVIRIS and MASTER data to support the development of the HyspIRI mission.

- Mapping the surface radiation and energy budget components from both AVIRIS and MASTER data.
 Algorithm development/refinement
 - Algorithm and data validation
 - □ Mapping of surface radiation and energy budget components
- 2. Quantifying the variations in surface energy budget of different surface types.
 - Mapping land cover types from AVIRIS and MASTER data
 - Assessing variations in those surface radiation and energy budget components of different cover types under various climate conditions
 - □ Addressing a set of scientific questions using these datasets

MODIS albedo algorithm

Traditional albedo retrieval algorithms

- Atmospheric correction: based on the "dark-object" method, requiring dense green vegetation canopies;
- Angular modeling: accumulates observations from multiple (16) days but surface conditions may change;
- Narrowband-broadband conversion: based on empirical statistical analysis for average atmospheric conditions with considerable uncertainty;
- Atmospheric correction requires BRDF information & angular modeling requires atmospherically corrected surface reflectance;
- Errors associated with each procedure may cancel or reinforce each other.

Direct estimation of surface albedo

Liang, S., (2003), A direct algorithm for estimating land surface broadband albedos from MODIS imagery, *IEEE Trans. Geosci. Remote Sen.*, 41(1):136-145;

Liang, S., J. Stroeve and J. Box, (2005), Mapping daily snow shortwave broadband albedo from MODIS: The improved direct estimation algorithm and validation, *Journal of Geophysical Research.* 110 (D10): Art. No. D10109.

Validation of VIIRS albedo data

Validation results of 16-day mean albedo from VIIRS BRDF LUT (top left), VIIRS Lambertian LUT (top right) and MODIS (bottom), using data from 2012 non-snow seasons (May-September) at seven SURFRAD sites.

Wang, D., Liang, S., He, T., Yu, Y. 2013. Direct Estimation of Land Surface Albedo from VIIRS Data: Algorithm Improvement and Preliminary Validation. JGR. Revised

Apply and refine to AVIRIS data

Comparison of ground measurements AVIRIS shortwave albedo estimates from (a) the stepwise regression algorithm and (b) the PCA-based algorithm at AmeriFlux sites. Statistics shown in the figure are based on flights with resolutions coarser than 8 m (circles). Flights with finer resolutions (<8 m) are denoted in triangles.

OF

He, T., S. Liang, D. Wang, and Q. Shi, (2013). Estimation of high-resolution land surface shortwave albedo from AVIRIS data. *IEEE JSTAR, under review*.

Mapping surface albedo: AVIRIS vs. Landsat

Bias: 0.002 0.45 RMSE: 0.032 0.4 R²: 0.762 0.35 AVIRIS SW albedo 0.3 0.25 0.2 0.15 0.1 (C) 0.05 0.05 01 0.15 0.25 0.45 0.5 0.2 0.3 0.35 04 Landsat SW albedo

Shortwave albedo estimations from: (a) Landsat TM on Aug 18th, 2010; (b) AVIRIS on Aug 26th, 2010 using the stepwise regression algorithm; and (c) scatter plot. Image is centered at 43.08°N, 89.41°W in Madison, WI, USA.

Estimation of shortwave net radiation

Kim, H.Y., & Liang, S. (2010). Development of a hybrid method for estimating land surface shortwave net radiation from MODIS data. Remote Sensing of Environment, 114, 2393-2402

Algorithm improvement: high resolution Landsat data

Comparison between instantaneous and daily SSNR (in W/m²) using the method of water vapor correction and in situ measurements at six AmeriFlux sites from 2003-2005.

Wang, D. Liang, S. He, T. 2013. Mapping high-resolution surface shortwave net radiation from Landsat data. IEEE Geoscience and Remote Sensing Letter, in press

Estimating shortwave net radiation from AVIRIS

Shortwave radiation estimation: AVIRIS

Comparison of ground measurements AVIRIS downward radiation (a) and net radiation (b) estimates at AmeriFlux sites. Statistics shown in the figure are based on flights with resolutions coarser than 8 m (circles). Flights with finer resolutions (<8 m) are denoted in triangles.

He, T., S. Liang, D. Wang, and Q. Shi. Land surface shortwave radiation budget estimation from AVIRIS data. *in preparation*

Estimating longwave fluxes

Wang, W., & Liang, S. (2009). Estimating High-Spatial Resolution Clear-Sky Land Surface Downwelling and Net Longwave Radiation from MODIS Data. *Remote Sensing of Environment, 113*, 745-754

	GEWEX-SRB			ISCCP-FD			CERES-FSW			MODIS		
Sites	\mathbb{R}^2	Bias(%)	STD(%)	\mathbb{R}^2	Bias(%)	STD(%)	\mathbb{R}^2	Bias(%)	STD(%)	\mathbb{R}^2	Bias(%)	STD(%)
					1	North America	a					
BON	0.86	-17.7(-5.6)	21.6(6.8)	0.62	-5.2(-1.6)	32.1(10.0)	0.95	3.2(1.1)	15.0(5.0)	0.88	-5.4(-1.8)	22.3(7.4)
TBL	0.79	-23.6(-8.1)	18.4(6.3)	0.58	18.8(6.4)	32.0(10.8)	0.86	-6.4(-2.2)	18.5(6.5)	0.87	1.3(0.5)	18.6(6.5)
DRA	0.94	-29.9(-9.9)	11.4(3.7)	0.76	26.5(8.6)	22.8(7.4)	0.95	-17.7(-5.8)	11.7(3.8)	0.84	-18.2(-5.9)	20.2(6.5)
FPK	0.85	-16.5(-5.7)	20.3(7.0)	0.78	5.6(1.9)	28.2(9.8)	0.92	-3.6(-1.3)	17.9(6.3)	0.93	-4.7(-1.7)	15.7(5.6)
GWN	0.86	-19.9(-5.9)	19.7(5.9)	0.54	-13.0(-3.9)	32.6(9.8)	0.94	-6.3(-2.0)	15.2(4.7)	0.81	-8.2(-2.6)	27.4(8.5)
PSU	0.85	-21.7(-7.1)	21.3(7.0)	0.64	7.2(2.4)	31.7(10.4)	0.92	1.2(0.4)	16.4(5.4)	0.86	-7.3(-2.4)	19.5(6.5)
Mean	0.86	-21.55(-7.1)	18.8(6.1)	0.65	6.7(2.3)	29.9(9.7)	0.92	-4.9(-1.6)	15.8(5.3)	0.87	-7.1(-2.3)	20.6(6.8)
					Oingh	ai-Tibetan Pi	lateau					
Amdo	0.72	-8.8(-5.2)	18.3(10.9)	0.39	34.4(21.9)	24.6(15.6)	0.63	-1.0(-0.6)	21.2(12.3)	0.49	16.0(9.4)	36.2(21.2)
BJ	0.85	-22.6(-10.9)	18.2(8.8)	0.58	39.6(21.5)	25.7(13.9)	0.83	-7.3(-3.7)	18.0(9.1)	0.60	26.3(13.3)	36.4(18.5)
D105	0.72	-7.1(-4.0)	24.6(14.0)	0.49	28.3(17.0)	35.5(21.4)	0.81	-1.9(-1.1)	19.7(11.3)	0.54	17.4(9.9)	34.9(20.0)
Gaize	0.87	-22.2(-11.3)	13.3(6.8)	0.50	21.6(11.0)	37.7(19.3)	0.87	-13.8(-6.8)	15.8(7.8)	0.81	16.4(8.0)	26.4(12.9)
QHB	0.81	-2.5(-1.2)	23.7(10.9)	0.55	4.2(2.1)	39.5(19.4)	0.81	-10.6(-4.7)	23.5(10.6)	0.69	0.0(0.0)	32.1(14.5)
Mean	0.79	-12.6(-6.5)	19.6(10.3)	0.50	25.6(14.7)	32.6(17.9)	0.79	-6.9(-3.4)	19.6(10.2)	0.63	15.2(8.1)	33.2(17.4)
					5	Southeast Asia	1					
MKL	0.65	-19.1(-4.9)	16.5(4.3)	0.39	-3.5(-0.9)	21.8(5.7)	0.10	-19.7(-5.0)	29.5(7.4)	0.66	-25.4(-6.4)	17.3(4.4)
SKR	0.54	-14.3(-3.7)	13.8(3.5)	0.42	-6.1(-1.6)	17.1(4.4)	0.71	-13.1(-3.4)	10.5(2.7)	0.55	-16.5(-4.3)	12.7(3.3)
Mean	0.60	-16.7(-4.3)	15.2(3.9)	0.41	-4.8(-1.3)	19.5(5.1)	0.41	-16.4(-4.2)	20.0(5.1)	0.61	-21.0(-5.4)	15.0(3.9)
						Japan						
TKY	0.59	-41.5(-12.9)	34.1(10.6)	0.56	-14.5(-4.4)	36.9(11.3)	0.66	-16.7(-5.4)	22.6(7.2)	0.82	-29.8(-9.5)	16.1(5.2)
TMK	0.73	-19.8(-6.4)	23.4(7.6)	0.66	-5.0(-1.7)	27.7(9.4)	0.77	-12.2(-4.0)	19.8(6.6)	0.87	-17.7(-5.9)	14.5(4.8)
Mean	0.66	-30.7(-9.7)	28.8(9.1)	0.61	-9.8(-3.1)	32.3(10.4)	0.72	-14.5(-4.7)	21.2(6.9)	0.85	-23.8(-7.7)	15.3(5.0)
					Four	Regions Com	bined					
All Mean	0.73	-20.4(-6.9)	20.6(7.4)	0.54	4.4(3.2)	28.6(10.8)	0.71	-10.7(-3.5)	19.2(6.9)	0.74	-9.2(-1.8)	21.0(8.3)

Table 5. R², Bias, Relative Bias of Satellite Products, STD, and Relative STD of the Differences Between Observed and Satellite-Estimated Clear-Sky LWDN at All Sites for 2003 (Wm⁻²)

Gui, S., Liang, S.L., & Li, L. (2010). Evaluation of satellite-estimated surface longwave radiation using ground-based observations. *Journal of Geophysical Research-Atmospheres*, 115

LW estimation from MASTER data

- MODTRAN5 is used to simulate longwave radiative transfer of MASTER data
 - Database of atmospheric profile (SeeBor V5.0) is used.
 - A database including various surface types is used as the inputs of emissivity.
 - Variations of view zenith angle are considered.

- MASTER has 50 bands, 25 of them are visible and NIR.
- 10 of them are thermal infrared bands.
- Some bands (41,49,50) have many pixels filled

Mapping ET

- We will start with the improved regression model that maps global ET using the satellite data and ancillary information (Wang and Liang 2008; Wang et al., 2010a,b).
- We will continue to evaluate other ET algorithms
- We plan to map ET by fusing multiple ET products

- Wang, K. and Liang, S. (2008), An improved method to estimate evapotranspiration from a combination of net radiation, vegetation index and temperature: Influence of soil moisture. *Journal of Hydrometeorology 9, 712-727*
- Yiao, Y. S. Liang, Q. Qin, and K. Wang, (2010), Monitoring Drought over the Conterminous United States from MODIS and NCEP Reanalysis-2 Data, *Journal of Applied Meteorology and Climatology*, 49(8), 1665-1680
- Yiao, Y. S. Liang, Q. Qin, and K. Wang, S. Zhao, (2010), Monitoring Global Land Surface Drought Based on an Improved Evapotranspiration Model, *International Journal of Applied Earth Observation and Geoinformation*, 12(6): S266-S776
- Wang, K., B. Dickinson, M. Wild, S. Liang, (2010), Evidence for Decadal Variation in Global Terrestrial Evapotranspiration between 1982 and 2002, Part 1: Model Development", *Journal of Geophysical Research - Atmospheres*, 115, D20112
- Wang, K., B. Dickinson, M. Wild, S. Liang, (2010), Evidence for Decadal Variation in Global Terrestrial Evapotranspiration between 1982 and 2002, Part 2: Results", *Journal of Geophysical Research – Atmospheres*, 115, D20113
- Xu, T., S. Liu, S. Liang, & J. Qin, (2011), Improving Predictions of Water and Heat Fluxes by Assimilating MODIS Land Surface Temperature Products into Common Land Model, *Journal of Hydrometeorology*, 12:227-244
- Xu, T., S. Liang, S. Liu, (2011), Estimating turbulent fluxes through assimilation of geostationary operational environmental satellites data using ensemble Kalman filter, *Journal of Geophysical Research*, 116, D09109, doi:10.1029/2010JD015150
- Yiao, Y. S. Liang, Q. Qin, and K. Wang, S. Zhao, (2011), Monitoring Global Land Surface Drought Based on a hybrid Evapotranspiration Model, International Journal of Applied Earth Observation and Geoinformation, 13(3): 447-457
- Yao, Y., S. Liang, Q. Qin, K. Wang, S. Liu, S. Zhao, N. Zhang, H. Dong, (2012), Satellite detection of the increases in global land surface evapotranspiration during 1984-2007, International Journal of Digital Earth, 5, 299-318
- Li, X., S. Liang, G. Yu, W. Yuan, et al. Estimation of Evapotranspiration over the Terrestrial Ecosystems in China. *Ecohydrology*

Field campaign

- We participated the field campaign in CA this August.
- Land cover, surface spectra, AOD, and LAI data were collected.
- Our capability to measure surface radiation and energy balance components is limited. Measurements of such variables need to exactly match with flights, due to their temporal dynamics.

Other tasks

- Mapping land cover types from AVIRIS data
- Mapping gross primary productivity (GPP) using the Eddy covariance production efficiency model - EC-PEM (Yuan et al., 2007,2010)
- Evaluation of changes of surface radiation and energy budgets and GPP under different climate and land cover conditions

Preliminary Result of Land Cover Mapping

AVIRIS Bands 10-60 surface reflectance, F130522t01p00r11

Four Observation Networks of Surface Energy Budget over US

- SURFRAD, 7 sites, surface radiation budget
 - The continental U.S. comprising the Surface Radiation Network
 - http://www.esrl.noaa.gov/gmd/grad/surfrad/sitepage.html
- **AmeriFlux**, level 2, 107 sites in USA, surface energy budget
 - Regional network of FLUXNET
 - <u>http://public.ornl.gov/ameriflux/</u>
- ISIS, 9 site, insolation
 - NOAA Integrated Surface Irradiance Study (ISIS)
 - http://www.esrl.noaa.gov/gmd/grad/isis/isissites.html
- BSRN, 11 sites in USA, surface radiation budget
 - Baseline Surface Radiation Network
 - Including 7 site of Surfrad and 4 other sites
 - http://www.bsrn.awi.de/en/home/bsrn/

Surfrad

Ameriflux

Overlapped sites and flights

- Temporal period: 2003, 2006-2011, 2013
- Sites from: Surfrad, AmeriFlux, and ISIS
- Method
 - Overlapped temporal coverage
 - Site point location within the boundary of flights
 - Boundary of flights were inferred from the longitude and latitude of four corners
- AVIRIS:
 - 81 scenes from 2241 records
 - AVIRIS summary from archive (2006-2011)
- MASTER:
 - 8 flights from 430 records
 - MASTER summary from all available archives
- Selected flights and sites will be used for validation

	MASTER							
	ID	Site name	Lon	Lat	Flight number	Year	Month	Dav
	1	US-NR1	-105.55	40.0329	11-667-00	2011	8	7
	2	LIC Mosi	106.34	24 4294	10 027 00	2010	7	24
	2	US-IVIPJ	-100.24	34.4384	10-937-00	2010	/	31
	3	US-Seg	-106.7	34.3623	08-001-03	2007	10	4
	4	US-Seg	-106.7	34.3623	09-001-02	2008	10	22
	5	US-Seg	-106.7	34.3623	11-002-05	2010	10	12
	6	US-Ses	-106.74	34,3349	09-001-02	2008	10	22
	7	LIS-Soc	-106 74	24 2240	11-002-05	2010	10	12
	,	ICIC man	-100.74	42.42	11-002-03	2010	0	10
	8	ISIS_msn	-89.33	43.13	11-009-00	2011	8	10
	AVIRIS							
	ID	Site name	Lon	Lat	Flight number	Year	Month	Day
	1	Surfrad BND	-88.37	40.05	f060802t01p00r07	2006	8	2
	2	Surfrad BND	-88.37	40.05	f060802t01p00r08	2006	8	2
	2	Surfrad TRI	105.24	40.12	f110807t01p00r16	2011	•	7
	3	Surfred TDL	405.24	40.13	f110807t01p00110	2011	0	7
	4	Surfrad_TBL	-105.24	40.13	111080/10100011/	2011	8	-
	5	Surfrad_TBL	-105.24	40.13	1110807t01p00r23	2011	8	/
	6	Surfrad_PSU	-77.93	40.72	f090706t01p00r06	2009	7	6
	7	Surfrad_PSU	-77.93	40.72	f090706t01p00r06	2009	7	6
	8	US-Blo	-120.63	38,8952	f070805t01p00r08	2007	8	5
	9	US-Ton	-120.97	38 4316	f060512t01p00r02	2006	5	12
	10	US Ten	120.07	38 4316	f070805101 = 00=05	2007	0	r.
	10	05-1011	-120.97	56.4510	1070803101p00103	2007	•	-
	11	US-ION	-120.97	38.4316	107080510100006	2007	8	5
	12	US-Ton	-120.97	38.4316	f070805t01p00r07	2007	8	5
	13	US-Var	-120.95	38.4067	f060512t01p00r02	2006	5	12
	14	US-Var	-120.95	38,4067	f070805t01p00r05	2007	8	5
	15	US-Var	-120.95	38.4067	f070805t01p00r06	2007	8	5
	16	US Vor	120.05	28 4067	f07080E±01p00r07	2007	0	c
	10	US-Val	-120.95	38.4007	1070805t01p00107	2007	0	5
	17	US-NK1	-105.55	40.0329	1008250100007	2010	8	25
	18	US-NR1	-105.55	40.0329	f110623t01p00r09	2011	6	23
	19	US-NR1	-105.55	40.0329	f110807t01p00r06	2011	8	7
	20	US-NR1	-105.55	40.0329	f110807t01p00r10	2011	8	7
	21	US-NR1	-105.55	40.0329	f110807t01p00r11	2011	8	7
	22	LIC NP1	105 55	40.0220	f110907t01p00r19	2011		7
	22	UC Cha	-103.33	40.0325	f10007001000118	2011	о г	22
	23	US-SKI	-81.078	25.3040	110052310100012	2010	5	23
	24	US-SP3	-82.163	29.7547	t100906t01p00r04	2010	9	6
	25	US-SP3	-82.163	29.7547	f100906t01p00r06	2010	9	6
	26	US-Bo2	-88.292	40.0061	f060802t01p00r07	2006	8	2
	27	US-Bo2	-88.292	40.0061	f060802t01p00r08	2006	8	2
	28	US-Bo2	-88 292	40 0061	f060804t01p00r06	2006	8	4
	20	US Bo2	99 202	40.0061	f060904t01p00r09	2006	0	4
	29	03-002	73 473	40.0001	1000804101p00108	2000	7	-
	30	US-Ha1	-/2.1/2	42.5378	109070510100007	2009	/	5
	31	US-Ha1	-72.172	42.5378	t090705t01p00r08	2009	7	5
	32	US-Ha1	-72.172	42.5378	f090710t01p00r12	2009	7	10
	33	US-Ha1	-72.172	42.5378	f090705t01p00r07	2009	7	5
	34	US-Ha1	-72.172	42.5378	f090705t01p00r08	2009	7	5
	35	US-Ha1	-72 172	42 5378	f090710t01p00r12	2009	7	10
	26	US Ho2	69 775	45 2072	f000710t01p00r10	2000	7	10
	30	03-1103	-08.725	45.2072	103071010100110	2009	-	10
	37	US-H03	-68.725	45.2072	1090/10t01p00r10	2009	/	10
	38	US-Ho1	-68.74	45.2041	t090710t01p00r10	2009	7	10
	39	US-Ho1	-68.74	45.2041	f090710t01p00r10	2009	7	10
	40	US-Ho2	-68.747	45.2091	f090710t01p00r10	2009	7	10
	41	US-Ho2	-68.747	45.2091	f090710t01p00r10	2009	7	10
	42	US-UMB	-84,714	45,5598	f090704t01p00r10	2009	7	4
	42	LIC LIMP	94 714	45 5509	f000704t01p00r10	2000	7	
	4.5		04.714	45.5550	fa 1000 4001 -00-12	2005		
	44		-04.714	45.5598	1110814(01p00112	2011	0	14
	45	US-UMB	-84./14	45.5598	1110816t01p00r13	2011	8	16
	46	US-Ne1	-96.477	41.165	t080713t01p00r09	2008	1	13
	47	US-Ne1	-96.477	41.165	f080713t01p00r10	2008	7	13
	48	US-Ne2	-96.47	41.1649	f080713t01p00r09	2008	7	13
	49	US-Ne2	-96.47	41.1649	f080713t01p00r10	2008	7	13
	50	US-Ne3	-96.44	41.1797	f080713t01n00r09	2008	7	13
	51	US-No?	-06 44	41 1707	f080713t01p00r40	2009	7	13
	51	US-Nes	74.200	41.1/9/	1080713t01p00110	2008	7	15
	52	US-Bar	-/1.288	44.0040	1090710101p00r09	2009	7	10
	53	US-Bar	-/1.288	44.0646	1090/10t01p00r09	2009	/	10
	54	US-ChR	-84.332	35.9311	1090724t01p00r06	2009	1	24
	55	US-ChR	-84.332	35.9311	f090724t01p00r06	2009	7	24
	56	US-Los	-89.979	46.0827	f080709t01p00r10	2008	7	9
	57	US-Los	-89.979	46.0827	f080714t01p00r06	2008	7	14
	58	US-Los	-89,970	46.0827	f090729t01n00r07	2009	7	29
	50	US-Los	-80 070	46 0927	f000720t01p00r07	2009	7	20
	60	LIS DES	00 272	AE 04E0	f080700+01p00-10	2009	-	0
	50	UC DE-	50.272	45.5459	1030705t01p00110	2008	-	
	01	US-PFa	-90.272	45.9459	1080/14t01p00r06	2008	-	14
	62	US-PFa	-90.272	45.9459	f090729t01p00r07	2009	7	29
	63	US-PFa	-90.272	45.9459	f090729t01p00r07	2009	7	29
	64	US-PFa	-90.272	45.9459	f100826t01p00r13	2010	8	26
	65	US-CaV	-79.421	39.0633	f090706t01p00r12	2009	7	6
	66	US-CaV	-79,421	39,0633	f090706t01p00r12	2009	7	6
	67	USJUMd	-84 609	45 5625	f00070/t01p00r10	2000	7	4
	60 60		94.058	45.5025	f000704t01p00110	2005	7	4
	08	US-UNIC	-84.698	45.5025	1090704101p00r10	2009	/	4
	69	US-UMd	-84.698	45.5625	r110814t01p00r12	2011	8	14
n	70	US-UMd	-84.698	45.5625	f110816t01p00r13	2011	8	16
	71	ISIS_hnx	-119.63	36.31	f060919t01p00r09	2006	9	19
/	72	ISIS msn	-89.33	43.13	f100826t01p00r07	2010	8	26
	73	ISIS msn	-80 33	43.13	f110730t01p00r17	2011	7	30
	73	ISIS_IIISII	80.00	42.12	f110910+01-00-07	2011	•	10
	/4	1315_mSN	-89.33	43.13	11108101010000707	2011	0	10
	/5	ISIS_msn	-89.33	43.13	1110814t01p00r16	2011	8	14
	76	ISIS_msn	-89.33	43.13	t110816t01p00r08	2011	8	16
	77	ISIS_msn	-89.33	43.13	f110816t01p00r09	2011	8	16
	78	ISIS_ste	-77.47	38.98	f090706t01p00r13	2009	7	6
	79	ISIS ste	-77.47	38.98	f090706t01p00r14	2009	7	6
	80	ISIS ste	-77.47	38,98	f090706t01n00r13	2009	7	6
	-	ICIC ata	77 47	29.09	f000706t01p00-14	2000	7	6

Thank you!

