Spectroscopic Analysis of Temporal Live Fuel Moisture and Dry Matter Content

Yi Qi and Philip E. Dennison

Utah Remote Sensing Application Lab Department of Geography, University of Utah **Matt Jolly and Rachel Kropp** US Forest Service Missoula Fire Science Lab

Live Fuel Moisture (LFM)

- Water content of living plant material
- LFM
- Water acts as a heat sink for combustion and heat transfer
- High LFM reduces probability of live fuel ignition and fire rate of spread through live fuels

Vegetation Spectral Signature

Dry Matter Spectral Signature

Ligno-cellulose absorption in SWIR

Wavelength (nm)

Sagebrush Temporal Spectral Change

Assumptions in LFM Estimation

• LFM =
$$\frac{m_w}{m_d} = \frac{m_f - m_d}{m_d} = \frac{CWC}{DMC}$$

- Empirical methods use vegetation indices, such as NDVI and NDWI, to indirectly estimate LFM.
- Radiative transfer modeling often assumes stable DMC and fluctuating CWC.
- Fire behavior models (e.g. Rothermel) also assume stable dry matter and fluctuating water content.

Research Objectives

- Examine the seasonal variation of LFM and dry matter content.
- Explore biochemical foundations of LFM and dry matter content variation.
- Understand hyperspectral expression of dry matter content and biochemical constituents.

Field Sampling of LFM

- Lodgepole pine (*Pinus contorta*): new and old
- Big sagebrush (Artemisia tridentata)
- Dry matter in percentage of fresh mass (DMP)
- Relative water content (RWC)

Biochemical Constituents

Name	Description	
Neutral Detergent Fiber (NDF)	lignin, cellulose	
Non-structural carbohydrate (NSC)	sugar, starch	
Neutral detergent soluble fiber (NDSF)	hemicellulose	
Protein	nitrogen bearing content	
Fat	wax and fat	
Ash	mineral content	

Leaf-scale Spectroscopy

Statistical Analysis

- Principle component analysis (PCA)
 Seasonal patterns of biochemical constituents
- Semi-partial correlation analysis
 Contribution of water and dry matter to LFM
- Partial-least-square regression (PLS)
 Spectral correlations to LFM and dry matter

Seasonal Trend of LFM

Seasonal Trend of DMP

Seasonal Trend of RWC

Seasonal Trend of NDF

PCA of All Variables

Semi-partial Correlation

Species	Dry matter (g)	Water (g)	Common Variance
New needles	0.37	0.05	0.45
Old needles	0.17	0.1	0.45
Sagebrush	0.24	0.23	0.08

PLS Results

	New Needle R ²	Old Needle R ²	Sagebrush R ²
LFM	0.94	0.72	0.91
DMP	0.94	0.75	0.8
RWC	0.15	0.43	0.85
Protein	0.7	0.4	0.9
NDF	0.6	0.3	0.4
Fat	0.8	0.3	0.6
Ash	0.6	0.5	0.9
NSC	0.7	0.3	0.5
NDSF	0.3	0.2	0.1

LFM

DMP

RWC

NSC

24

NDF

25

Key Finding 1: Temporal Trends

- New needles started with high LFM and converged to similar LFM as old needles.
- Dry matter increased in new needles and sagebrush leaves, and was relatively stable in old needles.
- Relative water content was relatively stable.

Key Finding 2: Biochemical Variation

- Dry matter was more important than water content in driving LFM variation in lodgepole pine needles.
- LFM variation was jointly caused by water and dry matter in sagebrush.
- LFM masks what may be ecologically important temporal variation in water content, dry matter content, and biochemical constituents.

Key Finding 3: Hyperspectral Signature

- Absorption features of multiple biochemical constituents shaped spectroscopic data.
 Water, chlorophyll, and NIR reflectance are the dominant signals.
- Dry matter content absorption in the SWIR does not have strong changes in expression
- It is difficult to isolate spectral signatures of individual constituents.

Conclusions

- New and old lodgepole pine needles have different seasonal trends in LFM and dry matter content
- Dry matter is a more important driver in LFM variation than water in lodgepole pine needles
- Dry matter content is not uniquely expressed within wavelength 380 – 1800 nm.
- HyspIRI data have higher potential for estimating LFM in sagebrush than lodgepole pine.

Acknowledgements

- Simon Brewer, Department of Geography, University of Utah
- NASA grant #NNX11AF93G

