

A Flight and Ground Operations Concept for the Intelligent Payload Module for the Proposed HyspIRI Mission

Steve Chien, Joshua Doubleday Jet Propulsion Laboratory California Institute of Technology

Portions of this work were performed by the Jet Propulsion Laboratory, California Institute of Technology, under contract from the National Aeronautics and Space Administration. © 2013 California Institute of Technology. Government sponsorship acknowledged. JPL Clearance # 12-5107

Intelligent Payload Module Summary

- The Intelligent Payload Module will enable near real-time downlink of selected subset (spatial, spectral, product) of VSWIR/TIR data using heritage Direct Broadcast/Direct Readout technology
- Direct Broadcast data rate: ~10 x 10⁶ bits / sec out of
- Anticipated HyspIRI data rate: ~ 800 x 10⁶ bits/sec = VSWIR + TIR
- ~40x oversubscription assuming standard (2x) compression algorithms

High Interest Heritage Products

Discipline	Products	Heritage (not exhaustive)	Interest
Cryosphere	Snow, Water, Ice Land	Hyperion/EO-1 (onboard) , MODIS, ASTER, AVHRR, Landsat (Ground)	High
Volcanology	Thermal emission	AVHRR, ASTER, MODIS (ground), Hyperion (onboard)	High
Hydrology	Surface Water Extent	MODIS, Landsat, WV2, Geo-Eye, Ikonos, ASTER (ground), Hyperion (onboard)	High
Wildfire	Thermal Mapping	MODIS, (Ground), Hyperion (onboard)	High
	Burn Scar	Landsat, AVHRR, Aviris, ALI, Hyperion, ASTER (ground)	High

For further details see: S. Chien, D. Mclaren, D. Tran, A. G. Davies, J. Doubleday, D. Mandl, "Onboard Product Generation on Earth Observing One: A Pathfinder for the Proposed HyspIRI Mission Intelligent Payload Module, IEEE JSTARS Special Issue on the Earth Observing One (EO-1) Satellite Mission: Over a decade in space, 2013.

For further information see: Davies, A. G., S. Chien, V. Baker, T. Doggett, J. Dohm, R. Greeley, F. Ip, R. Castano, B. Cichy, R. Lee, G. Rabideau, D. Tran and R. Sherwood (2006) Monitoring Active Volcanism with the Autonomous Sciencecraft Experiment (ASE). *Remote Sensing of Environment*, Vol. 101, Issue 4, pp. 427-446.

4 km

EO-1: Onboard derived flood maps of Diamantina River, Australia, 2004.

Courtesy NASA/GSFC/EO-1/U. AZ/JPL

For further information: Ip, F., J. M. Dohm, V. R. Baker, T. Doggett, A. G. Davies, R. Castano, S. Chien, B. Cichy, R. Greeley, and R. Sherwood (2006) Development and Testing of the Autonomous Spacecraft Experiment (ASE) floodwater classifiers: Real-time Smart Reconnaissance of Transient Flooding. Remote Sensing of Environment, Vol. 101, Issue 4, pp. 463-481.

EO-1 Onboard: Cryosphere Classifier:

Deadhorse (Prudhoe Bay), Alaska

Courtesy NASA/EO-1/GSFC/ASU

For further information see: Doggett, T., R. Greeley, A. G. Davies, S. Chien, B. Cichy, R. Castano, K. Williams, V. Baker, J. Dohm and F. Ip (2006) Autonomous On-Board Detection of Cryospheric Change. *Remote Sensing of Environment*, Vol. 101, Issue 4, pp. 447-462.

More Advanced Products

Moderate Interest Products

Discipline	Products	Heritage	Interest	
Aerosols	Overwater Dust,	MODIS, ASTER, MISR, CERES,	Moderate – technical challenge	
	Overland Dust	AVHRR, GMS-SEVIRI,		
		CALIPSO (ground)		
Ecosystem	Vegetation Stress	AVIRIS, Hyperion, AVHRR	Moderate – limited timeliness driver	
	Indices	(ground)		
Ecosystem	TIR	Landsat, MODIS, GOES (ground)	Moderate – limited coverage	
	Evapotranspiration		_	
Disease	Vegetation Disease	AVHRR (ground)	Moderate – technical challenge – requires	
	Risk		long historical baseline	
Oceanography	Ocean Color	MODIS, AVHRR, MERIS,	Moderate – technical challenge, low	
		SeaWifs, ASTER, Landsat,	strength signal	
		VIIRS, Hyperion, CZCS, OCTS		
		(ground)		
Oceanography	Sea Surface	MODIS	Moderate – technical challenge, small	
	Temperature		temperature differentials, callibration	
Volcanology,	Plume	ASTER, MODIS (ground)	Moderate - technical challenge, limited	
Wildfire			coverage	

Also technology push concepts (following slides).

Flood Tracking

- Integrated WV-2 data (2m spatial resolution)
- Developed algorithms and workflows for water depth and volume estimation (incorporating DEM) – potential HyspIRI IPM algorithms

Reflectance of WV2 scene of Bangkok w/ flooded Don Muang Airport, acquired 11.3.2011 Surface water extent (blue) from SVM classifier using 5th degree polynomial kernel on 8 WV2 bands Resulting water depth map calculated using SVM-classified surface water extent map and DEM. Total water volume calculated: ~27,872,000 m³; average flooded pixel depth: 0.64 m.

For further details see D. Mclaren, J. Doubleday, S. Chien, "Automated tracking of flooding using WorldView-2 imagery," ⁹ Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery XVIII, SPIE Defense, Security, and Sensing, Baltimore, MD, April 2012.

Volcanic Plume Height Estimation

_ _ _ _

ground as plume
 plume as plume

shadow as shadow ground, ice as ground

Histogram-equalized WV2 image, acquired May 17, 2011

Plume & Shadow Classification using TextureCam Decision Forest Machine Learning [Thompson et al., LPSC, 2012]

d : Initial shadow length *d*': Shadow length after projecting
up to DEM & down along sun vector *h* : Plume point height

Plume height calculation using classification, viewing and solar geometry, DEM.

Reasonable correlation with visual, radar based measurement from [Arason et al. 2011] For further details see [Mclaren et al. 2012b, SPIE]

Onboard Hyperspectral Analysis

Superpixel segmentation SMACC endmember extraction onboard spectral search

Results from onboard EO-1 (9/2011)

For further details see [Thompson et al 2009, TGARS] [Thompson et al. 2012, TGARS]

Repeatability: maps

FO-1 Onboard

Sept. 27, 2011

EO-1 Onboard Sept. 21, 2011

Kruse/Grant manual analysis (AVIRIS)

Kruse/Grant manual analysis (Hyperion)

Repeatability: detections

Intelligent Payload Module Operations

- How will Ground/Science/Applications team designate which data/products to downlink?
- A range of operations policies are possible.
- Requirements:
 - Flexible, dynamic
 - Open to a range of input sources (human, electronic)
 - Low operations cost
 - Mature, low risk

HyspIRI IPM Operations Concept

Users input product requests in Google Earth

Electronic automatic tasking requests via Sensorwebs

> "lights out" payload operations

......

HyspIRI IPM Operations Concept

Users input product requests in Google Earth Planning system determines products based on overflights and resources (CPU, RAM downlink) CLASP+ ASPEN (ground), CASPER (onboard)

	Ateml		Accel Acceleration		-	
Ground Contact	image proc		na sya	1992 - 1998	24/2 24/2	ada.
		Obs + proc act				
Solar power gen	Atmel CPU					
	in use		•	;		
		SSR storage				
* ****						1
anar 1.11000 1.111111111111111111111		Raw SSR				
		storage		<u>шш</u> п т		

Electronic automatic tasking requests via Sensorwebs

> "lights out" payload operations

.....

HyspIRI IPM Operations Concept

Users input product requests in Google Earth Planning system determines products based on overflights and resources (CPU, RAM downlink) CLASP+ ASPEN (ground), CASPER (onboard)

8 × 5		Ateml		Landon M. Landon M. Jana K. Kerken P.			
		image proc		10 N/P	19495 - 20495 - 20495 - 20495 - 20495 - 20495 - 20495 - 20495 - 20495 - 20495 - 20495 - 20495 - 20495 - 20495 -	24 <u>7</u> 242	.998
			Obs + proc act			- 	
	Solar power gen	Atmel CPU		-	1		
		ÌII	SSR				
	۱		storage				30
	inter all all all all all all all all all al	101111110	Raw SSR	1		<u>іі</u> Ц	111 11111 11111
, 11			storage		<u></u>		ЩП

Electronic automatic tasking requests via Sensorwebs

.....

Spacecraft acquires imagery, generates product onboard (including onboard event detection), downlinks product

Input via Google Earth KML

Automated Planning Technology is Mature

- Many of the operations concepts have been in successful use on EO-1 2004- present
- Operations technologies (automated mission planning) in operations use on many missions (see [Chien et al. 2012 SpaceOps] for a survey).
- Range of operations policies are possible
 - If onboard processing and downlink is restricted to real-time (e.g. steady state equilibrium) optimal scheduling is tractable (local greedy algorithm is optimal).
 - If some level of buffering and lag behind incoming data is allowed, problem is exponential in the size of the lag (greedy with corresponding scheduling window is optimal)
 - Luckily (computation) or unluckily (flexibility) the anticipated instrument data rate is very large so feasible buffering of raw data is minimal.

ASPEN Generated Processing + D/L Plan

Users can view upcoming acquisition and processing plans

Operations Concept Maturity

- The software for this automated operations concept is <u>already implemented</u>.
- Software was first demonstrated in 2010, and has undergone minor enhancements since.
 - <u>Enhancement:</u> specification of latency so that products can be designated for later downlink over desired target ground stations.
 - <u>Enhancement:</u> enables dynamic across track swaths based on overlap with regions of interest

Intelligent Payload Experiment (IPEX)

- IPEX Cubesat will validate elements of HyspIRI IPM concept (launch scheduled 05 Dec 2013)
 - IPEX will generate products onboard
 - Some based on onboard image analysis
 - IPEX will use the proposed HyspIRI
 IPM web-based, automated
 operations concept

IPEX Model Image from July 2012 balloon test flight

IPEX Acquisition Plan

© 2012 Cnes/Spot Image Data SIO, NOAA, U.S. Navy, NGA, GEBCO Google⁻earth

Conclusions

- HyspIRI Intelligent Payload Module will enable delivery of low-latency products and data subsets (spectral, spatial)
 - Mature, heritage products (minimal onboard computing required) and
 - More advanced products (enhanced onboard computing needed)
- Operations concept uses a <u>simple, web-based</u> <u>interface</u> to specify products, regions, priorities
- Operations concept is <u>fully automated</u> and <u>does not require dedicated operations staff</u>