Validation of ASTER-Based Maps of Volcanic Sulfur Dioxide Plumes: A Preparatory Activity for the HyspIRI TIR Mission

> V. J. Realmuto Jet Propulsion Laboratory, California Institute of Technology

© 2013 California Institute of Technology. Government sponsorship acknowledged. Plume Tracker was the Principal Tool Used in the Following Analyses

Brief Review of Plume Tracker Developments Since October 2012 Misfit Calculation: Least Squares vs. Weighted Spectral Angle

Least Squares:

- Optimal Fit to Noisy Data
- Equal Weight to all Outliers
- Not Ideal for Temperature Estimation

Spectral Angle:

- Observed and Model Radiance Spectra Represented as Vectors in Data Space
- Minimize Angle Between Vectors (Spectral Angle)
- Minimization Weighted to Favor Solutions with Model Spectrum > Observed Spectrum

Optimum Temperature Estimate Given Imperfect Knowledge of Atmospheric Composition

12

ġ

10

WAVELENGTH (µm)

12

8

10

WAVELENGTH (µm)

Interpolation of Reflectance Spectra

ASTER Resolution to MODTRAN Resolution

Linear Interpolation Results in Spectral Variation within Response Functions of Individual Channels

Step-Wise Resampling Ensures Uniform Reflectance w/in a Channel

No "Gaps" in Resampled Spectrum

Simulations with Quartz Sandstone Lab Spectrum

Step-Wise Resampling + WSA Misfit has Significant Impact on the Estimated Emissivity

Significant Improvements in Estimates for ASTER Channels 11 – 13

Version 4.0 Accuracy: ASTER and MODIS Simulations of SO₂

Simulated Radiance Spectra: Theoretical Limits on Retrieval Accuracy Highly-Accurate Temperature Estimates: Independent of SO₂ Concentration

Version 4.0 Accuracy: HyTES Simulations for NH₃ and CH₄

Validation Efforts at Kilauea Volcano, Hawaii

Collaboration with USGS Hawaiian Volcano Observatory and University of Hawaii

ASTER VNIR False-Color Composites

ASTER TIR False-Color Composites

USGS-HVO Automated Ground Sensor Network

Station HRPKE

2012-01-05 11:06 HST

 SO_2 Column (g/m²)

2012-04-19 10:59 HST

SO₂ Column (g/m²)

2012-05-21 10:59 HST

SO₂ Column (g/m²)

2012-06-06 10:59 HST

SO₂ Column (g/m²)

MODIS TIR False-Color Composites

Total Mass SO₂ on 2012-05-21

Instrument	Spatial Resolution	Total Mass SO ₂ (metric tons)	Plume Area
ΟΜΙ	13 x 25 km	0.446 kt	16,472 km²
MODIS	1 km (at nadir)	0.231 kt	67 km²
ASTER	90 m	0.259 kt	71.15 km ²

Higher Spatial Resolution = Less "Dilution" Total Mass Should Decrease as Resolution Decreases (Coarsens)

SO₂ will be Under-Estimated if

- Plume does not fill a Pixel (IFOV)
- Distribution of SO₂ not Uniform within a Pixel

OMI Reports 2X Mass and 235X the Area: If "Background" SO₂ (< 0.5 DU) were Removed the Mass would Decrease

Validation Efforts Continue at Kilauea:

Coordinating HVO Field Campaigns with ASTER Overpasses

Urgent ASTER Status for Kilauea since May 2013

Validation Efforts at Turrialba Volcano, Costa Rica

Collaboration with University of Costa Rica

Site for Development of UAV-Based Plume Monitoring Technology (PI: D. Pieri, JPL) Tethered Balloon Deployment Turrialba Volcano, Costa Rica 01 February 2012

Version 3.0.2 Applied to ASTER Data

Turrialba Volcano, Costa Rica

21 Jan 2012

Challenging Conditions for SO₂ Retrieval: Humid Atmosphere, Low-Altitude Plume

Excellent Agreement With In-Situ (Tethersonde) Measurements from 01 Feb 2012 Micro-UAV Deployment Turrialba Volcano, Costa Rica 08 February 2013

Shameless Plugs:

Plume Tracker Demonstration on Wednesday (16 October) @ 7:00 PM

A New GPU-Enabled MODTRAN Thermal Model for the PLUME TRACKER Volcanic Emission Analysis Toolkit - Alexander Berk, Spectral Sciences, Inc

MODIS True-Color Composites

Sensitivity to SO₂ is a Function of Temperature Contrast

Plot Brightness Temperature Difference Relative to Clear Path $(SO_2 = 0)$

NE∆T 0.25 – 0.5: Realistic Temperature Sensitivity for ASTER or MODIS

Land Surface ($T_s = 320 \text{ K}$): SO₂ Detection Threshold ~ 3.0 mg/m³

Sea Surface ($T_s = 300 \text{ K}$): SO₂ Detection Threshold ~ 7.0 mg/m³

(Temperatures, Emissivity Spectra, and Elevation from ASTER Data over Kilauea Volcano)

Hash Table (Associative Array): Acceleration of Retrieval Algorithm

Key(1)	MODTRAN Spectrum(1)
Key(2)	MODTRAN Spectrum(2)
Key(3)	MODTRAN Spectrum(3)
Key(4)	MODTRAN Spectrum(4)

Key(i) = [zenith angle][surface elevation][surface T] [H₂O factor][O₃ factor][SO₂ factor]

Scan Hash Table for Matches to Existing Keys

Associated Spectrum used for Matching Keys; New Table Entry for Unique Keys

Time Trials (1296 pixels): 1.6 seconds/pixel w/ Hash Table 6.0 seconds/pixel w/o Hash Table

Retrieval Algorithm Time-Trials: Domain Refinement (V.2.2.9) vs. Brent's Method (V.3.0)

	Domain Refinement	Brent's Method
Calls to MODTRAN (ROI = 1296 pixels)	264,398	144,508
No Hash Table	6.4 sec/pix	3.2 sec/pix
Hash Table	1.6 sec/pix	0.8 sec/pix
Success Rate (Hash Table Hits vs. Misses)	77.4 %	77.0%
Cached Radiance (All Calls to MODTRAN Use Hash Table)	0.2 sec/pixel	0.0086 sec/pix