

Mapping Gas Emissions with the Hyperspectral Thermal Emission Spectrometer (HyTES)

Glynn Hulley

Jet Propulsion Laboratory, California Institute of Technology

(c) 2013 California Institute of Technology. Government sponsorship acknowledged.

PI: Simon Hook Project Manager: Bjorn Eng Optics: Zakos Mouroulis, William Johnson Detectors: Sarath Gunapala, Alex Soibel, David Ting Gratings: Dan Wilson Thermal/Mechanical: Chris Paine, Andy Lamborn, Kevin Knarr, William Johnson Science: Glynn Hulley, Simon Hook, Christopher Hughes, Sander Veraverbeke Data recording and storage: Nick Vance, Bjorn Eng

- HyTES Objectives and Instrument Characteristics
- Science Campaign sites (Apr 2013)
- Emissivity Validation
- Trace gas detection methods
 - Radiative closure method (Ammonia)
 - Clutter matched filter method (Methane)
- Examples:
 - Ammonia: Salton Sea fumeroles
 - Methane: Santa Barbara marine oil seeps
- Summary

HyTES Overall Objective and Science Goal

- <u>Objective</u>: Build and deploy an airborne Hyperspectral Thermal Emission Spectrometer (HyTES) with 512 pixels across track with pixel sizes in the range of 5 to 50 m (depending on aircraft flying height) and 256 spectral channels between 7.5 and 12 µm.
- <u>Science Goal</u>: Provide precursor high spectral and spatial resolution thermal infrared data for the NRC Recommended HyspIRI mission and for use in Earth Science Studies
 - Optimal band placement for HyspIRI TIR for surface compositional mapping and volcanic ash/gas detection (e.g. SO2)
 - Prelim Band Study report available at HyspIRI website (Ramsey, Realmuto, Hulley, Hook)

HyTES Instrument Characteristics

Twin Otter: Flights in 2012, 2013

Instrument Characteristic	HyTES		
Mass (Scanhead) ¹	12kg		
Power	400W		
Volume	1m x 0.5m (Cylinder)		
Number of pixels x track	512		
Number of bands	256		
Spectral Range	7.5-12 um		
Detector	Multi-stack QWIP		
Total Field of View	50 degrees		
Calibration (preflight)	Full aperture blackbody		
Swath Width	1.8 – 3.6 km		
Pixel size at 2000 m flight altitude	3.64m		
Pixel size at 20,000 m flight altitude	36.4m		

<u>Advanced Instrument Designs:</u> William Johnson

Science Campaign Sites – Apr 2013

April 2013 Campaign Snapshots

Cuprite, NV

NASA/JPL, CA

Death Valley, CA

Santa Barbara, CA

Lake Tahoe, CA/NV

Bands 150 (10.08 μm), 100 (9.17 μm), 58 (8.41 μm), displayed at RGB each image is 495 x 512 pixels

HyTES Calibration: Salton Sea, CA

Salton Sea- 04/29/2013 Line1-Run2-Segment15

HyTES Tskin = 300.3 K Radiometer Tskin = 299.7 K

HyTES Spectra: Death Valley, CA

2013-04-24.190040.DeathValley.Line2-Run1-Segment22 R С D

<u>Key:</u>

- A Volcanic (Basalt)
- B Carbonate
- C Quartz alluvial fan
- D Quartzite dome

- Single-pixel retrievals
- Atmospheric correction ISAC
- Ts/emis Retrieval TES

HyTES Spectra: Cuprite, NV

2013-04-24.173326.Cuprite.Line2-Run1

2013-04-24.172629.Cuprite.Line1-Run1

- <u>Key:</u> A – Kaolinite B – Carbonate C – Alunite
- D Quartz

Salton Sea: Ammonia (NH3)

HyTES RGB

Ammonia emitted from an active fumarole group exposed on a sandbar at the shoreline of the Salton Sea mud bank region.

Salton Sea: Ammonia (NH3)

Salton Sea: Ammonia (NH3)

Ammonia positive detection (red) overlayed on Tskin map (gray)

Brightness temperature difference [K] between observed and simulated data (band 187)

Radiance image plotted as RGB using bands [150, 100, 80]

0

0

Methane Plume Detection: Clutter Matched Filter

1. HyTES datacube of radiances, R $R \in (N,n)$ N = pixels, n = bands

2. Search for spectral signature, **b**, assumed to be linearly superimposed on background clutter. Gas signature **b** is extracted from Hitran database.

Applying signal filter vector to datacube, **R** produces plume signature image.

3. Calculate the spectral covariance matrix, K:

Santa Barbara: Methane

2013-04-26.205141.SantaBarbara.Line2-Run1

- HyTES science campaign showed promising results
 - Radiance spectral calibration
 - Emissivity retrieval validation
- Demonstrated two gas plume detection techniques using HyTES longwave infrared data (7.4-12 µm).
- Ammonia detected using radiative closure technique between 10-11 micron.
- Methane detected using clutter matched filter method between 7.5-8 micron.
- Optimum detection altitude for methane was ~2 km.

Rocky Mountain Oilfield Test Center (RMOTC) Methane Campaign

- Critical to constrain natural/anthropogenic CH4 sources
- JPL and collaborators conducted field test campaign in Casper, WY at RMOTC during June 2013
- Series of three controlled release points setup over 6 days:
 - Point source flux rates varied from 50 LPM to 2400 LPM
 - In situ measurements made from field towers (including met)
 - Small unmanned aerial system (sUAS)
- Three airborne sensors flew:
 - CARVE Fourier Transform Spectrometer (FTS)
 - AVIRIS-ng Imaging spectrometer (SWIR)
 - HyTES Thermal Infrared (7.5 8.5 micron)

HyTES flight tracks - RMOTC

X-N: 43.33°N, 106.23°W: Flux = 1500 ft³/hr

X-C: 43.30°N, 106.22°W: Flux = 500 ft³/hr

X-S: 43.30°N, 106.22°W: Flux = 5000 ft³/hr

X-N: 43.33°N, 106.23°W: Flux = 1500 ft³/hr

X-S: 43.30°N, 106.22°W: Flux = 5000 ft³/hr

Release X-C

500 ft³/hr

RMOTC Altitude: 2000-3000 m Resolution: ~3.5 m

0.9

0.85 0.8 0.75 0.7

0.65 0.6

0.55

0.5 0.45 0.4

0.7

0.4

0.9 0.85

0.8

0.75 0.7 0.65 0.6 0.55 0.5 0.45

0.4

18

Plume Concentration Retrieval

 $x = [L^{path} + L^{gnd}\tau^{atm}]$

50

45

40

CH4 Enhancement (ppm)

10

5

Background 'clutter'

HyTES Performance: RMOTC

Flux Rate ft ³ /hr	Site	Day	Altitude (km)	Detection	Signal to Clutter Ratio (SCR)
100	X-S	06/24	1.9	Partial	0.45
500	X-C	06/25	2.7	Yes	0.67
1000	X-S	06/24	1.9	Yes	0.68
1500	X-N	06/24	1.9	Yes	0.67
5000	X-S	06/25	2.7	Yes	0.79