

## Threshold considerations for future volcanic hotspot and ash detection using HyspIRI

### Michael Ramsey, Daniel Williams and Kevin Reath

<sup>1</sup>Department. of Geology and Planetary Science University of Pittsburgh, Pittsburgh, PA, USA

> Eyjafjallajökull eruption Iceland (19 Apr 10)



## Presented Previous Work Using ASTER TIR Data

- specifically with the Urgent Request Protocol (URP) system
- help predict expected HyspIRI TIR results
  - > dynamic volcanic processes
  - > expected cloud cover

### This Work

[Reath et al., 2013; Williams et al., 2013]

- thermal and compositional thresholds
  - > use of temperature changes as volcanic eruption precursors
  - > ash-rich plumes/clouds
    - spectral variability with particle size and composition for mapping of the proximal plume
    - statistical/trajectory modeling of distal plumes to identify source locations

# **ASTER URP Program**

### Has Improved the Temporal Frequency of ASTER

- based on thermal alert triggers from AVHRR and MODIS
  - > AVHRR: all volcanoes in Northern Pacific region (> 100)
  - MODIS: 20 volcanoes globally (most active)

## Statistics

- as of mid-2013
  - ▹ total 1580 UPR requests
  - > average: 1 scene / 2 days for the past 8.5 years
    - Russia (54%), United States (32%), Africa (4.8%), S. America (2.9%), C. America (2.9%), Europe (1.8%), and Pacifica (1.5%)



## Background: Thermal Thresholds

### Thermal Precursory Activity

- most volcanoes produce some level of precursory activity prior to an eruption
  - > if detected, can be analyzed over time
  - determine the time and magnitude of the impending eruption (forecasting)
  - ➤ example:



- Bezymianny volcano, Russia commonly produces a clear increase in activity months ahead of a larger eruption
- Tolbachik volcano produced no thermal precursors prior to the large effusive eruption in 2012
- examined three large eruptions (e.g., 2005, 2007, 2009) from Kliuchevskoi volcano

HysplRI Science and Application Workshop Pasadena, CA (15 – 17 Oct 2013)



## Methods: Thermal Thresholds

### Thermal Precursory Activity

- high temporal but low spatial resolution (*i.e.*, hours; 1 km) AVHRR data
  - ideal for detecting high energy events occurring over short time periods, such as small strombolian eruptions
- high spatial but low temporal resolution (*i.e.*, days to weeks; 90 m) ASTER data
  - > enables the detection of much lower levels of activity
  - > these anomalies are more commonly associated with the longer time scale pre-eruptive phase
- ASTER, AVHRR & MODIS TIR data time series examined for three large eruptions of Kliuchevskoi (2005, 2007, 2009)

## **Results:** Thermal Thresholds

## TIR Sensitivity

- example: the 2009 Kliuchevskoi eruption
  - clear fluctuations occur in summit temperatures 6 to 8 months before the eruption
  - significant increase in the precursory intensity occurs 2 months before the larger eruption



 not easily detected with AVHRR or MODIS due to the lower temperatures and spatial extent

## **Results:** Thermal Thresholds

## TIR Sensitivity: Spatial & Radiometric

- critical to have both high enough to detect this low-level, precursory activity
  - $\succ$  ASTER: 1.71 x 10<sup>3</sup> to 5.93 x 10<sup>3</sup> W/m<sup>2</sup> sr  $\mu m$
  - $\succ$  AVHRR: 2.70 x 10<sup>5</sup> to 6.29 x 10<sup>5</sup> W/m<sup>2</sup> sr  $\mu m$
  - ➢ MODIS: 2.23 x 10<sup>5</sup> to 9.47 x 10<sup>5</sup> W/m<sup>2</sup> sr µm



HyspIRI Science and Application Workshop Pasadena, CA (15 – 17 Oct 2013)

### TIR Emissivity of Silicate Ash

- prior work on volcanic ash has focused primarily on detection and future movements
  - > relies on the transmission spectrum of silicate ash
    - upwelling radiance interacts with the ash plume
      - » lower transmission at  $10\mu m$  than at  $12\mu m$
      - » basis for the brightness temperature difference (BTD) method of detection
- very limited work on the emission spectra of volcanic ash
  variation with mineralogy/particle size
- hypothesis: proximal plume is a complex mixture of particle sizes and composition
  - > optically thick and emits similar to a solid



# TIR Emissivity of Silicate Ash

- proximal plume of the Eyjafjallajökull 19 April 2010 eruption was examined
- emissivity end-members extracted from the ASTER TIR image data



- dominant silicate (± SO<sub>2</sub>?) spectral feature detected
- applied a linear deconvolution approach
  - > able to map the small-scale spatial variations of the ash endmember







### Spectral Libraries

- artificial, high-SiO<sub>2</sub> (obsidian)
  - crushed and dry-sieved to >150, 75-150,45-75 and <45µm</li>
  - <45µm was separated into 10µm fractions using a Stokes settling
- natural, low-SiO<sub>2</sub> (Sakurajima v.)
  - > dry-sieved for coarse fractions
  - Stokes settling for fine fractions
- preliminary emissivity spectra acquired
  - > examined at full and HyspIRI spectral resolutions





HysplRl Science and Application Workshop Pasadena, CA (15 – 17 Oct 2013)



### Sample Preparation



crushing

sieving



## Results: Ash Thresholds

High-SiO<sub>2</sub> Glass

Sakurajima Ash



### Preliminary Results

- spectral data acquired over the past week
- not all size fractions complete; ash samples lower SNR
- consistent spectral behavior/other studies using minerals
  - ➤ spectral separation ~ 45µm

## Results: Ash Thresholds

High-SiO<sub>2</sub> Glass

Sakurajima Ash



### Preliminary Results

- trends are detectable at HyspIRI spectral resolution
- should be able to distinguish composition and coarse vs. fine size fraction
  - > 7.3µm / 8.2µm band ratio may be viable for stratospheric plumes

### Plume Detection & Source Location

- examining approaches for predictive tracking of ash plume/ cloud back to a known source
  - > triggering of other satellite observations, hazards, etc.
  - > HYSPLIT, PUFF, etc. models all that predict the spread of ash clouds based on wind field data
  - > we have developed a method using the HYSPLIT backward trajectory function
    - MODIS brightness temperature difference (BTD) used as input (any image-based detection approach would also work)
    - imported into ArcMap and BTD classified/gridded on density
    - dense cloud grid cells iteratively fed into HYSPLIT at 3 different model height levels *troposphere, tropopause, stratosphere* 
      - » resulting trajectories compared to volcano proximity
      - » tropopause shows the greatest correlation [Carey et al., 2008]



## Results: Etna (30 Oct 2002)



### Etna Ash Cloud over Africa, October 30th 2002





## Results: Etna (1 Nov 2002)



#### Etna Ash Cloud over Greece, November 1st 2002





### HyspIRI TIR Potential For Volcanology

- temporal, spatial and radiometric resolution will be a game changer for volcano monitoring and eruption prediction
- combined ASTER/AVHRR/MODIS databases allow predictive volcanic capabilities for future HyspIRI
- even with cloud cover, temperature/time record will be vital
- composition and rough size fraction of silicate ash will be measureable using HyspIRI emissivity
- synergistic models using remote sensing and GIS should allow for reliable predictions of source locals
- more work is needed to quantify these thermal and ash thresholds



HyspIRI Science and Application Workshop Pasadena, CA (15 – 17 Oct 2013)

Eyjafjallajökull 19 April 2010