A hyperspectral approach to estimating biomass and plant production in a heterogeneous restored temperate peatland

Kristin Byrd¹, Lisa Schile², Lisamarie Windham-Myers³, Maggi Kelly², Jaclyn Hatala², and Dennis Baldocchi²

¹USGS Western Geographic Science Center, Menlo Park, CA; kbyrd@usgs.gov, ²U.C. Berkeley Department of Environmental Science, Policy and Management, Berkeley, CA, ³USGS National Research Program, Menlo Park, CA

Figure 1. The Sacramento-San Joaquin River Delta

Figure 2. cattail (*Typha* spp.) and tule or bulrush (*Schoenoplectus acutus*)

Questions

- 1. What vegetation indices best correlate with biomass, by water depth and season?
- 2. Does addition of plant structure data (leaf height above water) improve biomass estimates?
- 3. How does a dense litter layer influence the correlation between f_{APAR} and vegetation indices?
- 4. How does APAR, calculated as daily PAR*average f_{APAR} , relate to GPP modeled from eddy correlation flux measurements?

Table 1. Best Two-Band Vegetation Indices (TBVI) for predicting biomass

Dataset	Index	R ²
All Data	TBVI _{1195,854}	0.41
May-June	TBVI _{885,722}	0.32
July-August	TBVI _{1155,1003}	0.48
SeptOctober	TBVI _{2224,518}	0.33
water depth < 5 cm	TBVI _{1730,1710}	0.61
5 cm < water depth < 35 cm	TBVI _{1205,993}	0.47
water depth > 35 cm	TBVI _{973,885}	0.16

Figure 3. Addition of leaf height above water improves estimation of biomass, with $R^2 =$ 0.63 for a mid-summer dataset compared to $R^2 = 0.48$.

Figure 4. PAR_{transmitted} above litter TBVI_{1114,539} ~ $f_{\text{APAR}} R^2$ = 0.50

Figure 5. APAR_{green} increased with GPP, $R^2 = 0.99$

Conclusions

- Need for data-fusion approach for mapping biomass
- 2. Feasible to model productivity
- Combine maps with elevation forecast model to predict marsh response to sea level rise.