water quality monitoring: the role of HyspIRI

<u>Arnold Dekker, Tim Malthus, Erin Hestir</u> Earth Observation & Informatics -Transformational Capability Platform <u>29th May 2013 NASA GSFC</u>

DIVISION OF LAND AND WATER & WATER FOR A HEALTHY COUNTRY www.csiro.au

In situ bio-optical observations

Drivers for our EO of water quality research

- Legislation:
 - National Plan for Environmental Information
 - State of Environment
- Algorithms
- New Technologies
- Ecosystem science
 - Climate change and variability
 - Drivers of water quality
 - Resilience
 - Prediction

2013

2020

The Senate

Standing Committee on Economics

Lost in Space? Setting a new direction for Australia's space science and industry sector

The economic value of earth observation from space

> A review of the value to Australia of Earth observation from space

Continuity of Earth Observation Data for Australia: Research and Development Dependencies to 2020

January 2012

Australian Government

"...certainty and strategic direction for satellite technology users"

National Space Policy

"..better domestic co-ordination and focused international engagement"

"...giving priority to Earth observations from space.."

Australian Government

National Earth Observations from Space Infrastructure Plan

"CSIRO is Australia's lead R&D Agency"

Australian Context for Water Quality

- The Challenge: Ongoing monitoring of Australia's inland water quality
- Australia's water quality is poor and is negatively trending
- But water quality data are scarce, potentially declining and with poor temporal coverage
- We need rapid, cost-effective assessments of water quality to assess baseline conditions and study responses to existing and potential environmental stressors
- Such assessments are needed across a range of scales
- Includes from continuous in situ measurements to satellite remote sensing, the latter overcoming some of the costs of remote sampling

The potential solution

- http://www.clw.csiro.au/publications/waterforahealthycountry/#reports
- Satellite remote sensing
 - Provides an objective, high frequency and spatially continuous measurement tool to overcome these challenges
 - But for a limited set of water quality parameters
 - Using inversion approaches
 - Will need calibration and validation over low reflecting targets

EO-resolvable water bodies in Australia

Murray Darling Basin

Continental Australia

7 |

EO-resolvable water bodies in Australia

Dekker & Hestir 2012, CSIRO

Relative capability for wq retrieval using free satellite data

	Pixel Size (m)	Bands (400-900 nm)	Revisit cycle	CHL	СҮР	TSM	CDOM	SD	K _d
Low res.									
MODIS	1000	9	Daily	٠		•	٠	٠	•
MODIS	500	2	Daily	•	•		•		
MODIS	250	2	Daily	•	•	•	•		
MERIS	300	15	2-3 days	•	•	•	•	•	•
VIIRS	750	7	2x/day		•	•			
Med res.									
Landsat	30	4	16	•	•	•	•		
Future									
Sentinel-3	300	21	Daily	•	•	•	•	•	•
LDCM	30	5	16		•	•	•	•	•
Sentinel-2	10-60	10	3-5 days	•		•		•	•
HySpIRI	60	60	19 days	٠	•	•	٠	•	•

Highly suited, Suited, Potential, Not suited

• Adapted from: Dekker and Hestir (2012). Evaluating the Feasibility of Systematic Inland Water Quality Monitoring with Satellite Remote Sensing, CSIRO

CSIRC

10 | EEO Aquatic Team | Arnold Dekker

Pigment signals in spectral reflectance

Spectral resolution:

- Detect significant spectral features
- Discriminate different wq parameter signals

WAVELENGTH (nm)

Phytoplankton absorption

Colouring Material:Pigments in phytoplankton cultures: their light absorption and scattering

From left to right on the photo:

- —— Dunaliella tertiolecta
- Emiliania huxleyi
- Pavlova lutheri
- Porphyridium cruentum
- Synechococcus sp.
- Gymnodinium catenatum
- —— Thalassiosira pseudonana
- —— Chaetoceros socialis

Phytoplankton scattering

CSIRO Overview Estuarine and Coastal Remote Sensing in Australia

Algal bloom as seen by WorldView-2 2m

Algal bloom as seen by Landsat 30 m

Algal bloom reflectance simulation~ HyspIRI 60m

Needs bio-optical parameterisation of algorithm to estimate water quality or hyperspectral from space 9th May 2009 28th March 2011

Kilometers

0 5 10 20 30 40 Kilometers

MERIS inland –coastal water example (from G. Campbell USQ) Burdekin Falls Dam and Burdekin to GBR MERIS : every two days a scene @ 300 m resolution

Inland waters->->->->Coastal Waters

20 | EEO Aquatic

Semi-analytical approaches: the forward problem

Semi-analytical approaches: the inverse problem

$\mathsf{R}_{\mathsf{rs}}(\lambda) = f[a(\lambda), b_b(\lambda), \rho(\lambda), H, \Theta_{W'}, \Theta_{V'}, \psi]$

IOCCG Report Number 5 (2006): *Remote Sensing of Inherent Optical Properties: Fundamentals, Tests of Algorithms, and Applications.*

Solution: The adaptive Linear Matrix inversion (a-LMI) hyperspectral parameterisation-EO sensor agnostic

r_{rs}

0.040

0.035

0.020 0.015

0.010

400

500

600 700

λ(nm)

800

0.030 0.025 0.025 0.020

 $\begin{array}{c} C_{CHL} \\ C_{CDOM} \\ C_{NAP} \end{array}$

 $egin{aligned} a_{phy} \ a_{CDOM} \ a_{NAP} \ b_{bphy} \ b_{bNAP} \end{aligned}$

Brando et al, 2012, Applied Optics

Current & pending global mapping capabilities

Sentinel-2 as an Optically Deep Water Sensor

Band		Spatial 📃 👱	Spectral	From 🗾 To	Optically Deep Water	•
Nr		Resolution (m)	width (nm)	λ	λ	
	1	60	20	433	453 Chlorophyll, CDOM, NAP, Kd + Turb + SD	
	2	10	65	458	523 Carotenoids, zeaxanthine, CDOM, TSM,Kd + Turb + SD	
	3	10	35	543	578 Cyanophyco-erythrin, TSM, CDOM, Kd + Turb + SD	
	4	10	30	650	680 Chlorophylls, TSM, Kd + Turb + SD	
	5	20	15	698	713 TSM, Kd + Turb + SD, floating algal layers & macro-algae	
	6	20	15	733	748 TSM, Sunglint, floating algal layers & macro-algae	
	7	20	20	773	793 TSM, Sunglint, floating algal layers & macro-algae	
	8	10	115	785	900 TSM, Sunglint	
	8 a	20	20	855	875 ATCOR, Sunglint	
	9	60	20	935	955 ATCOR, Sunglint	
	10	60	30	1360	1390 ATCOR	
	11	20	90	1565	1655	
	12	20	180	2100	2280	

Users need decade-long term perspectives

	GMES Space Component Long-Term Scenario				
	2011-2013	2014-2020	2021 ==>		
Access to Contributing Missions					
	1				
Sentinel-1 A/B/C		<u>R</u>			
Sentinel-1 A/B/C 2nd Gen					
Sentinel-2 A/B/C					
Sentinel-2 A/B/C 2nd Gen					
Sentinel-3 A/B/C					
Sentinel-3 A/B/C 2nd Gen					
Sentinel-4 A/B (MTG-S1/2)					
Sentinel 5 Precursor					
Sentinel 5 A/B (MetOp-SG)					
Jason-CS A/B					
Jason -CS Follow-on A/B					
GSC Evolution					

Current blending opportunities

Hyspiri's contribution to global mapping

Future blending potential

Towards an Aquatic Earth Observation System: using tools such as hydrodynamic and biogeochemical models, in situ observations and multi-and <u>hyperspectral</u> earth observation to:

- Eutrophication- Nutrients Fluxes & Budgets
 - Inland waters, bays and estuaries: water quality, macrophytes & habitat
- Carbon Fluxes & Budgets
 - Land to inland water body to sea: fluxes and reservoirs
- Climate Change
 - Retrospective time series analyses for trend and anomaly detection (including areas in Australia where nothing has been measured previously)
- Shoreline erosion and flooding
 - Effect of land-use changes on run-off
 - Riparian and flood plain
 - Bathymetry and DEM
- National Environmental Accounts
 - Habitat status, State of Environment reporting
- Emergency management
 - Potentially harmful algal blooms
 - Oil & Chemical Spill Response;

