Impacts of Spatial and Spectral Resolution on Hyperspectral Remote Sensing of Aquatic Vegetation

Richard C. Zimmerman (rzimmerm@odu.edu) Victoria J. Hill (vhill@odu.edu) Department of Ocean, Earth & Atmospheric Sciences Old Dominion University Norfolk VA 23520

Paul Bissett Florida Environmental Research Institute

David Kohler Weo-Geo, Inc. Portland OR

Motivation for Remote Sensing of Coastal Environments

- Highly valuable, highly visible
- Very productive
 - Biogeochemistry
 - Carbon flux
 - Fisheries
- Shoreline protection
 - Flooding, storm inundation
 - Erosion
- Esthetic
 - Recreation, tourism voducts Workshop

- Heavily impacted
 - Water quality
 - Flow patterns
 - Erosion
 - Loss of habitat
 - Climate change
 - Sea level rise
 - Storm intensity
 - Ocean warming
 - Ocean acidification

Challenges for Remote Sensing of Coastal

- Dark water targets in close proximity to bright land
- Spatial heterogeneity requires high spatial resolution
- Submerged habitats represent unique optical targets
 - Darker than land
 - Brighter than optically deep water
 - Unique range of spectral signatures
 - Bare sand and mud
 - Green seagrass meadows
 - Red, brown and green seaweeds
 - Corals
 - Affected by water depth, transparency and color

• Atmospheric correction is critical

3

The Aquatic Macrophyte

Opportunities:

- Floating canopies provides a strong reflecting target
 - No overlying water column
 - California kelp forests
 - Macrocystis pyrifera
 - Nereocystis luetkeana
 - Gulf Of Mexico and Gulf Stream
 - Sargassum fluitans
- Seagrasses grow in optically shallow water – within the visible range of remote sensing

In clear, blue Bahamian waters, past experiments demonstrated utility of HS imagery for mapping

- Bathymetry
- Sand & seagrass distribution
- Seagrass abundance

200 m

² Depth Myspiri Data Products Workshop

In more complex waters of coastal Florida Past experiments demonstrated utility of HS imagery for mapping:

- Sand
- Submerged seagrass
- Floating seagrass
- Benthic algae

And for quantifying

 Abundance of submerged seagrass

But bathymetry is problematic

In more complex waters of coastal California past experiments demonstrated utility of HS imagery

for mapping giant kelp

- Distribution
- Abundance
- Productivity
- However, the results are sensitive to spatial resolution of the imagery

Size matters....

- Retrieval accuracy decreases with pixel resolution
- Error appears consistent within a scene
- But not across scenes

150

200

250

8

Size matters....

- Retrieval accuracy decreases with pixel resolution
- Error appears consistent within a scene
- But not across scenes

So, how does spectral resolution affect our retrievals?

- WorldView-2
 - Operated by Digital Globe, Inc
 - 8 multispectral bands
 - 3 m resolution (0.5 m pan)
 - 12 bit dynamic range
 - Pointing capability
 - Optimize view angle
 - Avoid glint

Study Site: St Joseph's Bay, FL, USA

© 2012 Google Image © 2012 TerraMetrics © 2012 Europa Technologies

- Optically deep basin (>3 m)
- Shallow fringe (<2 m) consisting of

28*52'27.34" N 83*32'50.49" W elev -58 ft

Tallahassee

- Bare sand
- Seagrass meadows
- Benthic algae
- Highly colored water column
 - CDOM
 - Phytoplankton
 - Detritus/Sediment

Hyspiri Data Products Workshop

GOOQ

Jacksonville

Step 3: Remove optically deep water pixels using acoustic DEM:

15

Step 5: Retrieve R_b for seagrass pixels

- $R_{\rm rs}$ from WV-2 imagery
- $Q_{\rm b} = E_{\rm u}(z_{\rm b})/L_{\rm u}(z_{\rm b}) = \pi$
- *K*_{Lu} & *K*_d from *Hydrolight* using measured IOPs

$$R_{b} = \frac{R_{rs}Q_{b}}{t} \frac{\exp\left[-K_{Lu}z_{b}\right]}{\exp\left(K_{d}z_{b}\right)}$$

- *z*_b bottom depth from acoustic
- t air/sea transmittance of $L_{11}(0.54)$

Dierssen, H., R. Zimmerman, R. Leathers, T. Downes, and C. Davis. 2003. Remote sensing of seagrass and bathymetry in the Bahamas Banks using high resolution airborne imagery. Limnol. Oceangr. 48: 444-455.

Quantifying the Abundance of Submerged Aquatic Vegetation in Nearshore Coastal Environments

2006 SAMSON HS Image

	2006	2010	Difference
Target	Hyperspectral	Multispectral	(%)
Water depth at overpass			
(rel MLW)	0.4	-0.5	
Total Area Covered	149	184	0
Benthic Classification			
Accuracy	100%	100%	0
Optically Shallow Area			
(km²)	37	57	34
Bare Sand Area (km ²)	14	27	49
Benthic Vegetation Area			
(km²)	24	30	21
SAV Area (km²)	15	11	-35
FAV Area (km²)	3	19	82
Benthic Algae	5	N.A.	

2010 WV-2 MS Image

3010-11-14-T-16-04-16

Two additional sites –

St. George Sound Taylor County, Fl

Quantifying the Abundance of Submerged Aquatic **Vegetation in Nearshore Coastal Environments**

2012 WV-2 MS Image St George Sound, FL

Leaf Area Index

2

Underlying image, atmospherically corrected WV2. 27th April 2012.

2010 WV-2 MS Image Taylor County, FL

Conclusions

- Aquatic macrophyte abundance readily quantified from imaging spectroscopy
- Spatial resolution affects retrieval statistics
 - Loss of texture and patch detail
 - Over-estimates size of large patches
 - Small patches disappear
 - Largest effects between 10 and 50 m resolution
- Spectral resolution affects resolution of plant functional types
 - MS imagery easily discriminates between vegetated areas and sand
 - Sufficient for quantifying seagrass abundance in coastal waters
 - Discrimination among vegetation functional types not possible
 - Optically deep green water looks like SAV
 - Seagrasses and seaweeds not separable
- Bathymetry is essential; optical retrieval unreliable
 - LIDAR bathymetry library growing
 - Once obtained, likely to be valid for considerable time in most areas

Future Work

- The glint issue can be tested experimentally
 - Hyspiri Discussion Group 2009-2010
 - Not a serious problem for classifying seagrass and bright sand in clear (blue) waters
 - Ability degrades with turbidity & depth
 - Need to assess impacts of glint
 - in turbid or colored coastal waters
 - on biomass estimates
- MS-sharpening as a way to increase spatial resolution of HS image?
- Analogous to pan-sharpening of MS imagery
- Could be tested by co-ordinated imaging of same region from 2 sensors
 - E.g. HICO and WV2