Ecological Forecasting for Terrestrial and Aquatic Ecosystems Session

Plant Growth Forms

Susan L. Ustin
U. California Davis

slustin@ucdavis.edu
How do Botanists Classify Plants with similar Traits?

Many Definitions of Plant Functional Types

1. Location of pernnating (overwintering) organs
How do Botanists Classify Plants with similar Traits?

Many Definitions of Plant Functional Types

2. Branching architectures
Remote Sensing PFTs Developed from GCM Parameterizations

<table>
<thead>
<tr>
<th>SiB2</th>
<th>BATS</th>
<th>IGBP DISCover</th>
</tr>
</thead>
<tbody>
<tr>
<td>Broadleaf evergreen tree</td>
<td>Broadleaf evergreen tree</td>
<td>Broadleaf evergreen forest</td>
</tr>
<tr>
<td>Broadleaf deciduous tree</td>
<td>Broadleaf deciduous tree</td>
<td>Broadleaf deciduous forest</td>
</tr>
<tr>
<td>Broadleaf & needleleaf tree</td>
<td>Mixed woodland</td>
<td>Mixed forest</td>
</tr>
<tr>
<td>Needleleaf evergreen tree</td>
<td>Needleleaf evergreen tree</td>
<td>Needleleaf evergreen forest</td>
</tr>
<tr>
<td>Needleleaf deciduous tree</td>
<td>Needleleaf deciduous tree</td>
<td>Needleleaf deciduous forest</td>
</tr>
<tr>
<td>Broadleaf shrub</td>
<td>Evergreen shrub</td>
<td>Closed shrubland</td>
</tr>
<tr>
<td>Dwarf trees & shrubs</td>
<td>Deciduous shrub</td>
<td>Open shrubland</td>
</tr>
<tr>
<td>Agriculture C3 grassland</td>
<td>Tall grass (savanna)</td>
<td>Woody savanna</td>
</tr>
<tr>
<td>Short vegetation C4 grassland</td>
<td>Short grass</td>
<td>Savanna</td>
</tr>
<tr>
<td></td>
<td>tundra</td>
<td>Grassland</td>
</tr>
<tr>
<td></td>
<td>desert</td>
<td>Cropland</td>
</tr>
<tr>
<td></td>
<td>Semidesert</td>
<td>Crop & other vegetation</td>
</tr>
<tr>
<td></td>
<td>Cropland</td>
<td>Barren or Sparse</td>
</tr>
<tr>
<td></td>
<td>Irrigated Crop</td>
<td>Wetland</td>
</tr>
<tr>
<td></td>
<td>Wetland</td>
<td>Snow & Ice</td>
</tr>
<tr>
<td></td>
<td>Glacier</td>
<td></td>
</tr>
</tbody>
</table>

IGBP DISCover, International Geosphere-Biosphere Programme Data and Information System Global 1 km Land Cover Data Set (Loveland et al., 2000)
Remote Sensing PFTs Developed from GCM Parameterizations

Climate Rules

Remote Sensing Data Products

<table>
<thead>
<tr>
<th>Remote Sensing Data Products</th>
<th>Plant Functional Types</th>
</tr>
</thead>
<tbody>
<tr>
<td>Needleleaf evergreen tree</td>
<td>Temperate</td>
</tr>
<tr>
<td></td>
<td>Boreal</td>
</tr>
<tr>
<td>Needleleaf deciduous tree</td>
<td>Boreal</td>
</tr>
<tr>
<td>Broadleaf evergreen tree</td>
<td>Tropical</td>
</tr>
<tr>
<td></td>
<td>Temperate</td>
</tr>
<tr>
<td>Broadleaf deciduous tree</td>
<td>Tropical</td>
</tr>
<tr>
<td></td>
<td>Temperate</td>
</tr>
<tr>
<td></td>
<td>Boreal</td>
</tr>
<tr>
<td>Shrub</td>
<td>Broadleaf evergreen temperate</td>
</tr>
<tr>
<td></td>
<td>Broadleaf deciduous temperate</td>
</tr>
<tr>
<td></td>
<td>Broadleaf deciduous boreal</td>
</tr>
<tr>
<td>Grass</td>
<td>C3</td>
</tr>
<tr>
<td></td>
<td>C3 arctic</td>
</tr>
<tr>
<td></td>
<td>C4</td>
</tr>
<tr>
<td>Crop</td>
<td>Crop 1 (e.g., corn)</td>
</tr>
<tr>
<td></td>
<td>Crop 2 (e.g., wheat)</td>
</tr>
</tbody>
</table>

PFT Databases:

- 1 km U MD tree cover
 - Needleleaf, Broadleaf
 - Evergreen, Deciduous

- 1 km IGBP DISCover
 - Shrub, Grass, Crop

Monthly Leaf Area

- 1 km AVHRR R, NIR
- April 1992 to March 1993
- NDVI 200km x 200km grid
- Ave NDVI for 1 km pixel, w/ PFT > 60%

Oleson and Bonan (2000)
Distribution of PFTs Used in CLM model

Optical properties for plant functional types

<table>
<thead>
<tr>
<th>Plant Functional Type</th>
<th>Leaf Angle</th>
<th>Leaf Reflectance VIS</th>
<th>Leaf Reflectance NIR</th>
<th>Stem Reflectance VIS</th>
<th>Stem Reflectance NIR</th>
<th>Leaf Transmittance VIS</th>
<th>Leaf Transmittance NIR</th>
<th>Stem Transmittance VIS</th>
<th>Stem Transmittance NIR</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>NET temperate</td>
<td>0.01</td>
<td>0.07</td>
<td>0.35</td>
<td>0.16</td>
<td>0.39</td>
<td>0.05</td>
<td>0.10</td>
<td>0.001</td>
<td>0.001</td>
</tr>
<tr>
<td>NET boreal</td>
<td>0.01</td>
<td>0.07</td>
<td>0.35</td>
<td>0.16</td>
<td>0.39</td>
<td>0.05</td>
<td>0.10</td>
<td>0.001</td>
<td>0.001</td>
</tr>
<tr>
<td>NDT boreal</td>
<td>0.01</td>
<td>0.07</td>
<td>0.35</td>
<td>0.16</td>
<td>0.39</td>
<td>0.05</td>
<td>0.10</td>
<td>0.001</td>
<td>0.001</td>
</tr>
<tr>
<td>BET tropical</td>
<td>0.10</td>
<td>0.10</td>
<td>0.45</td>
<td>0.16</td>
<td>0.39</td>
<td>0.05</td>
<td>0.25</td>
<td>0.001</td>
<td>0.001</td>
</tr>
<tr>
<td>BET temperate</td>
<td>0.10</td>
<td>0.10</td>
<td>0.45</td>
<td>0.16</td>
<td>0.39</td>
<td>0.05</td>
<td>0.25</td>
<td>0.001</td>
<td>0.001</td>
</tr>
<tr>
<td>BDT tropical</td>
<td>0.01</td>
<td>0.10</td>
<td>0.45</td>
<td>0.16</td>
<td>0.39</td>
<td>0.05</td>
<td>0.25</td>
<td>0.001</td>
<td>0.001</td>
</tr>
<tr>
<td>BDT temperate</td>
<td>0.25</td>
<td>0.10</td>
<td>0.45</td>
<td>0.16</td>
<td>0.39</td>
<td>0.05</td>
<td>0.25</td>
<td>0.001</td>
<td>0.001</td>
</tr>
<tr>
<td>BDT boreal</td>
<td>0.25</td>
<td>0.10</td>
<td>0.45</td>
<td>0.16</td>
<td>0.39</td>
<td>0.05</td>
<td>0.25</td>
<td>0.001</td>
<td>0.001</td>
</tr>
<tr>
<td>BES temperate</td>
<td>0.01</td>
<td>0.07</td>
<td>0.35</td>
<td>0.16</td>
<td>0.39</td>
<td>0.05</td>
<td>0.10</td>
<td>0.001</td>
<td>0.001</td>
</tr>
<tr>
<td>BDS temperate</td>
<td>0.25</td>
<td>0.10</td>
<td>0.45</td>
<td>0.16</td>
<td>0.39</td>
<td>0.05</td>
<td>0.25</td>
<td>0.001</td>
<td>0.001</td>
</tr>
<tr>
<td>BDS boreal</td>
<td>0.25</td>
<td>0.10</td>
<td>0.45</td>
<td>0.16</td>
<td>0.39</td>
<td>0.05</td>
<td>0.25</td>
<td>0.001</td>
<td>0.001</td>
</tr>
<tr>
<td>C<sub>3</sub> grass arctic</td>
<td>-0.30</td>
<td>0.11</td>
<td>0.58</td>
<td>0.36</td>
<td>0.58</td>
<td>0.07</td>
<td>0.25</td>
<td>0.220</td>
<td>0.380</td>
</tr>
<tr>
<td>C<sub>3</sub> grass</td>
<td>-0.30</td>
<td>0.11</td>
<td>0.58</td>
<td>0.36</td>
<td>0.58</td>
<td>0.07</td>
<td>0.25</td>
<td>0.220</td>
<td>0.380</td>
</tr>
<tr>
<td>C<sub>4</sub> grass</td>
<td>-0.30</td>
<td>0.11</td>
<td>0.58</td>
<td>0.36</td>
<td>0.58</td>
<td>0.07</td>
<td>0.25</td>
<td>0.220</td>
<td>0.380</td>
</tr>
<tr>
<td>Crop1</td>
<td>-0.30</td>
<td>0.11</td>
<td>0.58</td>
<td>0.36</td>
<td>0.58</td>
<td>0.07</td>
<td>0.25</td>
<td>0.220</td>
<td>0.380</td>
</tr>
<tr>
<td>Crop2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Plant Functional Type</td>
<td>Leaf Dimension (m)</td>
<td>Leaf Roughness Length</td>
<td>Displacement Height</td>
<td>Root Distribution</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------------------</td>
<td>--------------------</td>
<td>-----------------------</td>
<td>---------------------</td>
<td>-------------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NET temperate</td>
<td>0.04</td>
<td>0.055</td>
<td>0.67</td>
<td>7.0 2.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NET boreal</td>
<td>0.04</td>
<td>0.055</td>
<td>0.67</td>
<td>7.0 2.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NDT boreal</td>
<td>0.04</td>
<td>0.055</td>
<td>0.67</td>
<td>7.0 2.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BET tropical</td>
<td>0.04</td>
<td>0.075</td>
<td>0.67</td>
<td>7.0 1.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BET temperate</td>
<td>0.04</td>
<td>0.075</td>
<td>0.67</td>
<td>7.0 1.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BDT tropical</td>
<td>0.04</td>
<td>0.055</td>
<td>0.67</td>
<td>6.0 2.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BDT temperate</td>
<td>0.04</td>
<td>0.055</td>
<td>0.67</td>
<td>6.0 2.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BDT boreal</td>
<td>0.04</td>
<td>0.055</td>
<td>0.67</td>
<td>6.0 2.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BES temperate</td>
<td>0.04</td>
<td>0.120</td>
<td>0.68</td>
<td>7.0 1.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BDS temperate</td>
<td>0.04</td>
<td>0.120</td>
<td>0.68</td>
<td>7.0 1.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BDS boreal</td>
<td>0.04</td>
<td>0.120</td>
<td>0.68</td>
<td>7.0 1.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C₃ grass arctic</td>
<td>0.04</td>
<td>0.120</td>
<td>0.68</td>
<td>11.0 2.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C₃ grass</td>
<td>0.04</td>
<td>0.120</td>
<td>0.68</td>
<td>11.0 2.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C₄ grass</td>
<td>0.04</td>
<td>0.120</td>
<td>0.68</td>
<td>11.0 2.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Crop1</td>
<td>0.04</td>
<td>0.120</td>
<td>0.68</td>
<td>6.0 3.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Crop2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

different values in database
Photosynthetic parameters

<table>
<thead>
<tr>
<th>Plant Functional Type</th>
<th>Path</th>
<th>$V_{\text{max}25}$</th>
<th>A</th>
<th>m</th>
<th># different values in database</th>
</tr>
</thead>
<tbody>
<tr>
<td>NET temperate</td>
<td>C_3</td>
<td>51</td>
<td>0.06</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>NET boreal</td>
<td>C_3</td>
<td>43</td>
<td>0.06</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>NDT boreal</td>
<td>C_3</td>
<td>43</td>
<td>0.06</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>BET tropical</td>
<td>C_3</td>
<td>75</td>
<td>0.06</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>BET temperate</td>
<td>C_3</td>
<td>69</td>
<td>0.06</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>BDT tropical</td>
<td>C_3</td>
<td>40</td>
<td>0.06</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>BDT temperate</td>
<td>C_3</td>
<td>51</td>
<td>0.06</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>BDT boreal</td>
<td>C_3</td>
<td>51</td>
<td>0.06</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>BES temperate</td>
<td>C_3</td>
<td>17</td>
<td>0.06</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>BDS temperate</td>
<td>C_3</td>
<td>17</td>
<td>0.06</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>BDS boreal</td>
<td>C_3</td>
<td>33</td>
<td>0.06</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>C_3 grass arctic</td>
<td>C_3</td>
<td>43</td>
<td>0.06</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>C_3 grass</td>
<td>C_3</td>
<td>43</td>
<td>0.06</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>C_4 grass</td>
<td>C_4</td>
<td>24</td>
<td>0.04</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Crop1</td>
<td>C_3</td>
<td>50</td>
<td>0.06</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>Crop2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>
Does classification by growth form categories denote physiological functioning?
Tropical Forest in West Sumatra, Indonesia

- Emergent trees
- Dense Crown cover
- Epiphytes
- Understory trees
- Epiphytes
- Shrubs
- Herbaceous layer
Growth Form Differences Relate to Adaptations for Resource Conditions

Coast Redwood
Sequoia sempervirens

Sierra “Big Tree” Redwood
Sequoiadendron giganea

Diffuse Light
Moderate Sum/Win Temperatures
High soil moisture & Relative humidity
Closed canopy forests

Direct Light
Lower winter temperatures
Low summer soil moisture & Relative Humidity
Open canopy forests
Reflectance Changes with Age & Species Mixtures

Wind River Canopy Crane Site, Carson, WA
Age class distributions from newly harvested to 500+ yr “old growth” Conifer Forest

R = soil, G = vegetation, B = shade
Remnants of the Southern Gondwana Flora in Australia & New Zealand

Distribution of Canopy Cover with Height at Canopy Crane Site: Changing Light Conditions
The Concept of Mapping Leaf Optical Types: An Alternative to Mapping Functional Types

- Assumes a Limited Range of Optimizing Strategies to Respond to Environmental Conditions
- Based on Theory of Functional Convergence

Detectable Optical Properties Using Imaging Spectroscopy

- Leaf area index
- Leaf Mass Area \((=1/\text{SLA})\)
- Chlorophyll and Carotenoid Pigments
- Canopy Water Content
- Xanthophyll pigments
- Leaf Longevity
- Leaf Nitrogen
- Ligno-cellulose

These Optical Properties are consistent with Generalized Leaf Trait Literature developed over the past decade.
Relationships between Climate Space and Specific Leaf Area (SLA) and N Content/dry mass

- Georeferenced in TRY Database (69,296 species; 93 traits)
- Global Biodiversity Information Facility Database

Note: SLA = 1/LMA

Trait Frequency Distributions for Specific Leaf Area (SLA) and Leaf Nitrogen

Global Change Biology (2011) 17, 2905–2935
A Global Universal Spectrum of Leaf Economics: Key Co-Varying Structural and Physiological Properties

Traits vary from fast to slow return on investments in nutrients and dry mass in leaves, and operate largely independently of growth form, PFT or biome

>2500 species from 175 global sites

Wright et al. Nature, 2004
Leaf Investment Strategies are Largely Arrayed Along A Single Spectrum, With a Globally Consistent Pattern of Trait Correlations

Wright et al. Nature, 2004
Species Clusters based on Spectral Similarity by Site

Keely L. Roth, Dar A. Roberts, Philip E. Dennison, and Michael Alonzo, IGARSS 2012
Canonical Discriminant Analysis Results

Keely L. Roth, Dar A. Roberts, Philip E. Dennison, and Michael Alonzo, IGARSS 2012