Effect of image spatial and spectral characteristics on mapping semi-arid rangeland vegetation using MESMA

Kelly R. Thorp & Andrew N. French
USDA-ARS-ALARC, Maricopa, Arizona

Albert Rango
USDA-ARS Jornada Experimental Range
Las Cruces, New Mexico
Introduction

• Rangeland degradation
 – Livestock overgrazing
 – Drought
 – Climate change

• Invasive shrub encroachment

• Reduced grass vegetation

• Permanent landscape effects
 – Soil erosion
 – Hydrologic alterations
 – Reduced biodiversity

• Novel remote sensing technology
 – Instrumentation
 – Algorithms
 – Vegetation mapping and monitoring
Introduction

• Instrumentation
 – HyspIRI imaging spectrometer
 – 380 nm to 2500 nm in 10 nm bands
 – 60 m spatial resolution
 – Simulated with existing AVIRIS data (15 m)

• Algorithm
 – Multiple Endmember Spectral Mixture Analysis (MESMA)
 – Unmix image spectra using “pure” endmember spectra
 – Tests multiple endmember combinations for each image pixel
 – Obtain fractional cover maps for each endmember

• Objectives
 – Investigate MESMA for mapping rangeland vegetation
 – Test MESMA sensitivity to spatial and spectral degradations
Study Site

- Jornada Experimental Range
 - Field research lab
 - Established 1912 by USDA
 - 783 km²
 - 37 km NE Las Cruces, NM
 - 40 km W White Sands
Imaging Spectroscopy

- AVIRIS imagery
 - Jornada overflights
 - June 15, 2001
 - October 9, 2002
 - Five flightlines
 - Simulate HyspIRI spectral data
- Georeferenced to an orthophoto
- Atmospheric correction using “6S” algorithm
- Mosaic five flightlines for each date
Endmember Spectra

- Field spectroradiometer
 - ASD FieldSpec Pro
 - 350 nm to 2500 nm in 1 nm bands
 - 99% Spectralon panel
 - Prior to AVIRIS overflights
 - Five transects across the range
 - Shrubs: mesquite, creosote, tarbush
 - Grass
 - Transition
 - Documentation

- Dr. Jerry Ritchie (1937-2009)
Endmember Spectra

- Selection of endmember spectra
 - Graphical methods
 - Quantitative methods
 - MESMA methods
 - Goal: spectral separability

- Three final endmembers
 - Green shrub vegetation
 - Nonphotosynthetic grass vegetation
 - Bare soil

- Waveband elimination
 - Ground spectra & AVIRIS data
 - Low signal-to-noise ratio
 - Errors in atmospheric correction
MESMA

• VIPER Tools (www.vipertools.org)
 – Plug-in for ENVI software
 – Conducts MESMA and related algorithms
• Analysis
 – Independent MESMA for each year (2001 & 2002)
 – Four endmembers (Shrub, Grass, Soil & Shade)
 – Resulting fractional cover map for each endmember
• Evaluation
 – Compare MESMA to Jornada vegetation map
 – Compare MESMA between 2001 and 2002 years
 – Compare MESMA to spectral indices from AVIRIS (15 m)
 – Compare MESMA to spectral indices from IKONOS (4 m)
MESMA Results

June 15, 2001

October 9, 2002

1998

Gibbens et al. (2005)
MESMA Results

• Pearson’s r correlations
 – Between 2001 & 2002 MESMAs
 • Shrubs (0.66), Grass (0.67), Soil (0.39)
 – Between shrub endmember and AVIRIS NDVI
 • 2001 (0.73), 2002 (0.58)
 – Between shrub+grass endmembers and AVIRIS CAI
 • 2001 (0.59), 2002 (0.60)
 – Between soil endmember and AVIRIS CAI
 • 2001 (-0.89), 2002 (-0.79)
 – Between 2001 shrub endmember and IKONOS NDVI
 • Southwest subset (0.71), Northwest subset (0.57)
Image Spatial Degradations

- Spatial degradations
 - Ten multiples of original resolution
 - Aggregate AVIRIS images
 - Run MESMA on degraded AVIRIS
 - Aggregate original MESMA as ‘Truth’
 - Compare fractional cover results

<table>
<thead>
<tr>
<th>Multiple</th>
<th>AVIRIS</th>
<th>Degraded MESMA</th>
<th>‘Truth’ MESMA</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Original</td>
<td></td>
<td>MESMA</td>
</tr>
<tr>
<td>2</td>
<td>Aggr. 2x</td>
<td>MESMA</td>
<td>Aggr. 2x</td>
</tr>
<tr>
<td>3</td>
<td>Aggr. 3x</td>
<td>MESMA</td>
<td>Aggr. 3x</td>
</tr>
<tr>
<td>10</td>
<td>Aggr. 10x</td>
<td>MESMA</td>
<td>Aggr. 10x</td>
</tr>
</tbody>
</table>
2001 Spatial Scale Effects

- Avg. Bias < 0.006
- 2nd Multiple:
 - 45% pixels
 - < 1% different
- 10th Multiple:
 - 30% pixels
 - < 1% different
- 90% pixels < 10% different
2002 Spatial Scale Effects

- Avg. Bias < 0.02
- 2nd Multiple:
 - 40% pixels
 - < 1\% different
- 10th Multiple:
 - 25% pixels
 - < 1\% different
- 90\% pixels < 10\% different

[Diagram showing spatial resolution effects with bars for different spatial resolutions (31.0-155.0 m), grouped into 0%-1\%, 1%-10\%, and 10%-120\% difference categories for EM1, EM2, EM3, and EM4.]
Spatial Scale Effects at Jornada

- Method of Woodcock and Strahler (1987)
- Effect of spatial scale to resolve ‘truth’ image features
- Calculate local standard deviation of each endmember
- 60 m HyspIRI will not resolve spatial features at Jornada
Image Spectral Degradations

• Spectral degradations
 – 6 cases with key waveband eliminated
 • Exclude VIS/NIR (422 nm to 1088 nm)
 • Exclude SWIR1 (1513 nm to 1712 nm)
 • Exclude SWIR2 (2030 nm to 2339 nm)
 • VIS/NIR only (422 nm to 1088 nm)
 • SWIR1 only (1513 nm to 1712 nm)
 • SWIR2 only (2030 nm to 2339 nm)
 – Run MESMA for each case
 – Compare results to original MESMA with all wavelengths included
2001 Spectral Waveband Effects

- Avg. Bias > 0.01
 - 10 or 100 times greater than for spatial effects
- Few pixels < 1% different
- More pixels >10% different
- Need VIS/NIR
2002 Spectral Waveband Effects

- Avg. Bias > 0.01
 - 10 or 100 times greater than for spatial effects
- Few pixels < 1% different
- More pixels >10% different
- Need VIS/NIR
Conclusions

• MESMA
 – MESMA effective for distinguishing grass from shrubs
 – MESMA not effective at distinguishing between shrub species
 – MESMA very sensitive to spectral wavebands included
 – MESMA substantially less sensitive to image spatial resolution

• HyspIRI
 – HyspIRI not able to resolve spatial feature at Jornada
 – AVIRIS not able to resolve spatial features at Jornada
 – Optimum spatial resolution < 15 m at Jornada
 – MESMA works at suboptimal spatial resolution
 – Spectral considerations are more important than spatial
Questions?