

Assessing bio-optical variability of ocean waters and adjacent coral reefs using hyperspectral satellites

CSIRC

Arnold Dekker, Nagur Cherukuru, Elizabeth Botha, Kadija Oubelkheir and Vittorio Brando 2012 HyspIRI Workshop, Washington 16-18 October 2012

BY THE ENVIRONMENTAL EARTH OBSERVATION PROGRAM IN CSIRO LAND & WATER www.csiro.au THROUGH WEALTH FROM OCEANS

Based on work by: Young Je Park, Magnus Wettle, David Blondeau-Patissier, Paul Daniel, Stuart Phinn, Ch. Roelfsema, &Collaboration with Department Sustainability, Environment, Water, Population, Community and the Arts.

Introduction

To assess the validity of the often published sentence:

.....we assumed the ocean water optical properties to be the same over the coral reefs......for:

1.Optically significant water column concentrations

2.IOPS (spectral light absorption and backscattering)

3.SIOPS(concentration-specific light absorption and backscattering)

.. for the purpose of:

- Remote sensing inversion algorithm parameterisation
- •Bio-optical/underwater light climate modelling

And building forth on excellent work done by:

Boss, E., Zaneveld, J.R.V. (2003). The effect of bottom substrate on inherent optical properties: Evidence of biogeochemical processes. *Limnology and Oceanography* 48(1): 346-354

Goodman, J.A., Lee, Z.P., and Ustin, S.L. (2008) Influence of atmospheric and sea-surface corrections on retrieval of bottom depth and reflectance using a semi-analytical model: a case study in Kaneohe Bay, Hawaii. *Applied Optics* (47),28: p F1-F12.

Hedley, J., Roelfsema, C., Koetz, B. And Phinn, S. (2012) Capability of the Sentinel-2 mission for tropical coral reef mapping and coral beaching detection. *Remote Sensing of Environment* (120): p 145 – 155.

Hochberg, E.J., & Atkinson, M.J., (2003). Capabilities of remote sensors to classify coral, algae, and sand as pure and mixed spectra. *Remote Sensing of Environment*, 85, 174-189

Klonowski, W. M., P. R. C. S. Fearns, and M. J. Lynch. 2007. Retrieving key benthic cover types and bathymetry from hyperspectral imagery. Journal of Applied Remote Sensing **1**: 011505.

Maritorena, S. and Guillocheau (1996) Optical properties of water and spectral light absorption by living and non-living particles and by yellow substances in coral reef waters of French Polynesia. *Marine Ecology Progress Series*, (131): p 245-255.

A specific driver for our research: CSIRO - Optically Shallow and Optically Deep Water -Remote Sensing based on 3 methods

- Atmospheric correction and air-water interface effects removal (RT physics-based and increasingly relying on ANN for fast processing)
- For optically deep waters: adaptive linear matrix inversion method (aLMI) <u>using variable sets of SIOPS</u> (concentration Specific Inherent Optical Properties) to <u>allow for varying water</u> <u>types</u> within one image
- For optically shallow waters: enhancement of aLMI (including optimisation) by including <u>multiple substratum types</u> (= SAMBUCA)

The conceptual physics-based model for optically shallow waters

The conceptual physics-based model for optically shallow waters

The conceptual physics-based model for optically shallow waters

Study Areas and Fieldwork

- Heron Island in the southern Capricorn Bunker Group of the Great Barrier Reef:(23°27' S, 151°55' E)
 - 19th May 2004 to the 24th May 2004
 - Aim: Coral bleaching, substratum mapping, bathymetry
- Herald Cays in the Coral Sea The Coringa Herald Cays (17°00'S 149°10'E
 - 29th November 2006 to 6th December 2006
 - Aim: substratum mapping, bathymetry
- Lihou Reef system farther out into the Coral Sea). The Lihou Reefs (ranging from 18°00' S to 17°10' S and from 151°20' E to 152°10' E)
 - 5th December 2008 to the 16th December 2008.
 - Aim: substratum mapping, bathymetry

Study Area - Reef Locations

Coringa-Herald

Heron Island

Image: Heron Island reef

151°55'0"E

COIRC

Un-corrected pseudo-true colour Quickbird data (2006) of North East Herald (Oct 06) and South West Herald Cays (Sep 06): spatial resolution

2.6 * 2.6 m in colour bands (BI-Gr-Re-NIR);

0.6 * 0.6 m panchromatic (Grey Scale) Kilometers

Bathymetry Coringa-Herald and Lihou Reefs

Fieldwork Sites LihouReefs

Field survey conducted during December 2008. Stations are marked on the map where water samples were collected.

Fieldwork on Coral Reefs:

Small boats – no infrastructure

LIMNOLOGY and OCEANOGRAPHY: METHODS

Limnol. Oceanogr.: Methods 9, 2011, 396–425 © 2011, by the American Society of Limnology and Oceanography, Inc.

Intercomparison of shallow water bathymetry, hydro-optics, and benthos mapping techniques in Australian and Caribbean coastal environments

Arnold G. Dekker^{1,2}*, Stuart R. Phinn²*, Janet Anstee ¹, Paul Bissett³, Vittorio E. Brando^{1,2}, Brandon Casey⁴, Peter Fearns⁶, John Hedley^{7,8}, Wojciech Klonowski⁶, Zhong P. Lee⁵, Merv Lynch⁶, Mitchell Lyons², Curtis Mobley⁹, and Chris Roelfsema²

We compared 5 physics-based inversion models and one empirical inversion model on two airborne imaging spectrometry datasets in Caribbean (coral reef) and Australia (coastal embayment with seagrasses)

The CSIRO model tested was SAMBUCA:

CSIRO. V. Brando - A physics based retrieval and quality assessment of bathymetry from suboptimal hyperspectral data.

SAMBUCA: Semi Analytical Model for Bathymetry, Unmixing and Concentration Assessment

 $r_{rs}(\lambda)_{\text{mod elled}} = f(P, G, X, B, H, S, Y)$ Lee et al (1998, 1999, 2001) is replaced by

$$r_{rs}^{\text{model}} = f \begin{pmatrix} C_{CHL}, C_{CDOM}, C_{NAP}, H, q_{ij}, A_i(\lambda), A_j(\lambda), S_{CDOM}, S_{NAP}, Y_{rs} \end{pmatrix}$$

$$Y_{PHY}, Y_{NAP}, a_{PHY}^*(\lambda), a_{NAP}^*(\lambda_0), b_{bPHY}^*(\lambda_0), b_{bNAP}^*(\lambda_0), D_{bNAP}^*(\lambda_0) \end{pmatrix}$$

- C_{CHL} is the concentration of chlorophyll a
- C_{CDOM} is the concentration of CDOM, ie a_{CDOM}^* (λ_{CDOM}) is set to 1
- S_C is the slope of the CDOM absorption
- C_{NAP} is the concentration of NonAlgalParticulate matter
- S_{NAP} is the slope of NonAlgalParticulate absorption
- $a *_{NAP}(\lambda_{NAP})$ is specific absorption of NonAlgalParticulate at λ_{tr}
- $b_b *_{NAP}(\lambda_0)$ is the specific backscattering due to NonAlgalParticulate matter
- $a_{PHY}^{*}(\lambda_{ph})$ is specific absorption of phytoplankton
- $b_b *_{PHY}(\lambda_0)$ is the specific backscattering due to phytoplankton
- A_i , A_j are the reflectances of substrate i & j [selected from a spectral library of *n* spectra]
- q_{ij} is the ratio of substrate i to substrate j within each pixel

Chlorophyll and NAP

	Reef	Ocean	Ratio		
	Mea	Mean	Mean R:O		
Chlorophyll (µg L-1)					
Heron Island	0.113	0.386	0.294		
Coringa Herald	0.039	0.101	0.389		
Lihou Reefs	0.053	0.106	0.498		
Non Algal Particulate (mg L ⁻¹)					
Heron Island	1.232	1.106	1.114		
Coringa Herald	0.276	0.233	1.183		
Lihou Reefs	1.470	1.152	1.276		

Ratio's Reef to Ocean IOPS and SIOPs

Ratio's	Heron Island	Herald Cays	Lihou Reefs
Heron	Mean	Mean	Mean
Island	Reef:Ocean	Reef:Ocean	Reef:Ocean
a _{(NAP)440}	1.274	1.589	1.113
a _{(NAP)*440}	0.458	1.001	0.824
a _{(CDOM)440}	0.925	2.055	1.052
a _{(phy)440}	0.342	0.608	0.988
a _{(phy)*440}	1.345	1.650	0.703

Ocean IOP parameterisation 2,4,6,.....20 m depth simulations

IOPS

R(0-)

Coral Reef IOP parameterisation 2,4,6,.....20 m depth simulations

IOPS

R(0-)

Conclusion optical variability surrounding ocean waters and coral reef waters:

The often published sentence:

.....we assumed the ocean water optical properties to be the same over the coral reefs......for: is invalid.

Optical variability of ocean water surrounding coral reefs is variable Optical variability of coral reef waters is variable Ocean waters are biogeochemical transformed by coral reefs

SAMBUCA bathymetry map from Hyperion

supervised IKONOS classification

SAMBUCA-generated substrate maps using Hyperion data

substrate 1

substrate 2

Averaged reflectance library:

Results SAMBUCA bathymetry map from Hyperion data

Results: optical domain map

IKONOS reference image

SAMBUCA-generated optical domain map using Hyperion data

Recommendations/future work

•Analyse for these three studies:

- the b_b measurements
- The HPLC measurements
- Use these results to model the error caused in output of simulations of bio-optical models (using RTF or SA models) and assess the resultant error in:
 - Remote sensing algorithms for simultaneous retrieval of water column IOPS, bathymetry and substratum cover
 - Assessments of primary productivity
 - Assessment of biogeochemical transformations of surrounding (ocean) waters by coral reefs
- For a complex reef platform system such as Lihou Reefs: design a sophisticated field study based on hydrodynamical measurements and modelling and related biogeochemical measurements and modelling

The role of HyspIRI for global assessment of biogeochemical transformations of ocean water by coral reefs (and seagrasses, macro-algae etc.)

- HyspIRI is a key sensor for this purpose:
 - 19 day global revisit; 60 m spatial resolution; Hyperspectral VSNIR and TIR capability; High S:N
 - This is essential information to understand primary productivity and carbon budgets of coral reef systems
 - We need to make sure that all coral reefs to 50 m deep are included in HyspIRI data collection
 - Excellent synergy with ocean colour sensors
 - Sentinel-3 and PACE capable of assessing concentrations, IOPS and SIOPS around reef systems
 - Sentinel-2 with its 5 day revisit 10, 20 and 60 m multispectral resolution)
 - Spectral library: if to include sea grass, macro-algae, corals, benthic micro-algae, sand, mud, rubble, detritusthen metadata fields significantly different from terrestrial, vegetation and mineral spectra!

Acknowledgements: My co-authors and special recognition to: Magnus Wettle for doing significant parts of the fieldwork, measurements and analysis for Heron Island and Herald Cays and Young Je Park for Lihou Reefs

Thank you

CSIRO Land & Water: Environmental Earth Observation Arnold Dekker (BSc., MSc., PhD)

- t +61 2 62465821
- e arnold.dekker&csiro.au
- w www.csiro.au

Adjunct-Professor: Centre for Spatial Environmental Research, University of Queensland

ADD BUSINESS UNIT/FLAGSHIP NAME www.csiro.au

