

2012 Hyperspectral airborne campaign on Etna: multi data acquisition for ASI-PRISMA data simulation and algorithms development

Maria Fabrizia Buongiorno Istituto Nazionale di Geofisica e Vulcanologia

summary

- PRISMA MISSION OVERVIEW
- ASI-AGI PROJECT
- JUNE 2012 AIRBORNE CAMPAIGN

PRISMA Mission

• Mission Statement:

"....A <u>pre-operative</u> <u>small</u> <u>Italian hyperspectral</u> mission, aiming to qualify the <u>technology</u>, contribute to develop <u>applications</u> and provide <u>products</u> to institutional and scientific users for environmental observation and risk management ..."

- Mission objectives:
 - In orbit demonstration and qualification of an Italian state-of-the-art hyperspectral/ panchromatic camera;
 - Implementation of a pre-operative mission, with demonstrative/technological features;
 - Validation of end-to-end data processing able to develop new applications based on high spectral resolution images for Earth observation and to manage the environmental risks.
 - Capitalization of ASI heritage, considering the Hypseo mission and the Italian-Canadian Joint Hyperspectral Mission (JHM) study

Program:PRISMAEvent:Third Annual Hyperspectral Imaging ConferenceTopic:PRISMA MissionDate:Rome, 15 May 2012

Programme overview

PRISMA = PRecursore IperSpettrale della Missione Applicativa

Mission Objectives:

- Pre-operational and technology demonstrator nature
- Focus on
 - O Space qualification of PAN/HYP payload
 - development and production of PAN/HYP products
- Program Highlights:
 - National program
 - Fully funded by ASI
 - Mission includes System, interacting wind Target and Users
 - System B2/C/D/E1 contract running
 - CDR is on-going
 - Launch: within 2014

Program:PRISMAEvent:Third Annual Hyperspectral Imaging ConferenceTopic:PRISMA MissionDate:Rome, 15 May 2012

Rome, 15 May 2012 Date:

consent of ASI.

System Architecture

- Orbit and lifetime:
 - LEO SSO, 620km, 10.30 LTDN
 - □ 5 years lifetime
- System elements:
 - 1 "small" Satellite
 - O Platform
 - O Pan/Hyp Payload
 - O PDHT
 - Ground Segment
 - O MCC/SCC/FDS: Fucino
 - O Image Data Handling System: Matera
 - Launch Segment
 - O VEGA (baseline)

Program: PRISMA

Event: Third Annual Hyperspectral Imaging Conference Topic: PRISMA Mission Date: Rome, 15 May 2012

Mission highlights

Coverage:

- U World-wide
- Specific Area of interest (Aol)
- System Capacity:
 - Acquired data volume:
 - O Orbit: >50.000 km²
 - O Daily >100.000 km²
 - Daily products generation: 30 HYP/PAN
- System Latencies (inside Aol):
 - Re-look time: < 7 days</p>
 - Response time: < 14 days</p>
- Mission modes:
 - Primary: User driven
 - Secondary: Data driven (background mission)

Program:PRISMAEvent:Third Annual Hyperspectral Imaging ConferenceTopic:PRISMA MissionDate:Rome, 15 May 2012

Key imaging and payload requirements

- Swath / FOV: 30 km / 2.45°
- Spatial GSD (elementary geom. FoV):
 - PAN: <5 m (2x6000 pixels)</p>
 - HYP: <30 m (1000x256 pixels)</p>
- Spectral ranges:
 - PAN camera: 400-700 nm
 - HYP instrument (contiguous spectrum)
 - O VNIR: 400-1010 nm O SWIR: 920-2500 nm
- Spectral resolution: 10 nm
- Aperture diameter: 210mm
- MTF (@Nyquist frequency)

PAN	> 0.30		
VNIR	> 0.30		
SWIR	> 0.20		

- Radiometric Quantization: 12 bit
- SNR
 - PAN: 240:1
 - VNIR: 200:1 (400-1000 nm) 600:1 (@650nm)
 - SWIR: 200:1 (1000-1750 nm) 400:1 (@1550nm) 100:1 (1950-2350 nm) 200:1 (@2100nm)
- Absolute radiometric accuracy: <5%</p>

Program: PRISMA

Event: Third Annual Hyperspectral Imaging Conference Topic: PRISMA Mission Date: Rome, 15 May 2012

HYPERSPECTRAL Scientific & Application specific needs	Forestry & Agriculture	Environmental monitoring	Urban areas	Geology & volcanic and seismic risks	Glaciers and Snow Surface	Coastal and Inland waters	Biosphere & Climate Change
Swath width	20-	≥40 km	≥ 30km	20-	>	30-	30-
Ground Sampling Distance	20- VIS, SWIR 2,5-5m PAN	20- VNIR, 20- SWIR 1- PAN	VNIR, SWIR	20- VNIR, SWIR 2,5- PAN	20- VNIR, SWIR PAN	2 0 - 3 0 m VNIR	VNIR, SWIR
Spectral coverage	0,4 - 2,5 μm PAN channel	0.4 - 2.5 μm PAN channel	0.4 -2.5 μm PAN channel	0.4-2.5 μm PAN channel	0.4-2.5 µm PAN channel	0.4-2.5 μm	0.4-2.5 μm
Spectral resolution (FWHM)	≤ 10nm	≤10 nm	10 nm	≤10 nm	10 nm	10nm (5 nm near 685nm)	10nm
Spectral sampling interval	1 sample per FWHM	5 - 10 nm	1-2 nm	1 sample per FWHM	10 nm	5 nm	10 nm
SNR@30%refl; 30°SZA: VNIR SWIR	600:1	600:1 450:1	800:1	800:1	500:1 500:1	1000:1	600:1 400:1
Radiometric Quantization	12 - 16 bit	≥12 bit	12-16 bit	12-16 bit	> 12 bit	14-16 bit	12-16 bit
Radiometric calibration accuracy	≤5% goal 3%	≤5%	<0.01 µWcm ⁻² nm¹sr⁻¹	≤5% goal 1%	< 5%	< 0.01 μWcm ⁻² nm ⁻¹ sr ⁻¹	≤5%
Spectral calibration accuracy	0.1nm	0.1 nm	0.3 nm	0.1 nm	0.3 nm	0.3 nm	0.1 nm
Equator crossing time day	9:30 – 11:00 local time	10-12 local time	10 local time	9:30 - 10:30 local time	11-12 local time	10:00 – 11:00 local time	10:00 – 11:00 local time
Night acquisition time				10:30 night on the ascending orbits			

(

- National competition for 5 scientific projects
- Duration: 4 years
- 2 main tasks:
 - Research on specific theme reffering to the ASI list of applications using simil-PRISMA data and, after launch, PRISMA data
 - Scientific support to ASI PRISMA project team
- Identification of 5 Principal Investigators (PIs) in a Scientific Advisory Team
- Common Kick Off: 14/04/2011

TITLE	Name of the institute	PRISM
Development of algorithms and products for applications in agriculture and land monitoring to support the PRISMA mission (SAP 4 PRISMA)	Istituto di Metodologie per l'Analisi Ambientale IMAA CNR	Vincenzo Cuomo
Singergistic use of PRISMA products with high resolution meteo-chemistry simulations and their validation from ground and satellites (PRIMES)	CETEMPS - Univ. de L'Aquila	Guido Visconti
Hyperspectral systems analisys for integrated geophysical applications (ASI-AGI)	Istituto Nazionale di Geofisica e Vulcanologia (INGV)	Fabrizia Buongiorno
Advanced methodologies for analysis, integration and optimization of PRISMA level 1 and 2 products - OPTIMA -	Istituto di Fisica Applicata Nello Carrara (IFAC -CNR)	Ivan Pippi
Coasts and Lake Assessment and Monitoring by PRISMA HYperspectral Mission (CLAM PHYM)	Institute of Marine Sciences (ISMAR - CNR)	Luigi Alberotanza

Program: PRISMA

Third Annual Hyperspectral Imaging Conference PRISMA Mission Event:

Topic: Rome, 15 May 2012 Date:

For any further information on the PRISMA mission, please contact the ASI Program Manager

roberto.formaro@asi.it

For any further information on the scientific studies please contact

cristina.ananasso@asi.it

ASI-AGI

Analisi Sistemi Iperspettrali per le Applicazioni Geofisiche Integrate

ASI-AGI PROJECT ACTIVITY SCHEME

PRISMA SIMULATOR

- Module developed in IDL which will take in input the PRISMA instrument response functions, S/N, view geometry furnished by ASI
- to calculate
 - simulated radiance
 - Simulated path radiance
 - Simulated Spectral and spatial response of the instrument
 - Simulated N/S

Prisma Radiance Simulator

PHASE 1

MODTRAN has been used to model the sensor and atmospheric parameter for each pixel the considered PRISMA sub set of 10000 pixles

- Surface temperature 290 K (circa 17° C)
- Mid latitude Summer (Latitude 45° Nord)
- Satellite altitude 700 Km
- Albedo: Riflettance map calculated by means of Hyperion image acquired on Mt. Etna
- Spectral Range: 0.842-0.844

PHASE 2

On beginning of 2012 the industrial team started the calibration measurements of system optical components in laboratory

In order to improve the simulation products we introduced the information provided by the industrial team

- Prisma laboratory simulated response function.
- Simulated NdL of the instrument

To make the modeling more complex we have introduced the DEM information and temperature map of the surface for the

Topographic information and surface geometry informations as "aspect" e "slope" to calculate the contribute from adiacent pixels.

Radianza

slope

Phase 2 results

Radianza reale

Radianza simulata

230x380 pixels

AIRBORNE CAMPAIGN ON ETNA JUNE 22-28 2012

Participants

Stefania Amici(1), Laura Colini(1), Fawzi Doumaz(1), Valerio Lombardo(1), Francesco Mazzarini(1), Massimo Musacchio(1), Malvina Silvestri(1), Claudia Spinetti(1), Massimiliano Favalli(1), Ilaria Isola(1), Marco Neri(1), Salvo Giammanco(1), Tommaso Caltabiano(1), Giuseppe Salerno(1), Alessandro La Spina(1) Giuseppe Puglisi(1), Sergio Teggi(2), Valentina Sarli(3), Giovanni Mancini (4), Paolo Cafaro(4), Salvatore D'Andrea(4),Gabriele Curci(5) and Cristina Ananasso(6).

- 1 Istituto Nazionale di Geofisica e Vulcanologia
- 2 Università di Modena e Reggio Emilia
- 3 Centro di Geomorfologia Integrata dell'Area del Mediterraneo (CGIAM)
- 4 Corpo Capitanerie di Porto
- 5 Università degli Studi dell'Aquila CTEMS
- 6 Agenzia Spaziale Italiana

The CAL/VAL activities are based on 4 specific goals

- 1. Organize an airborne campaing on MT. Etna which is the main test site for ASI-AGI PROJECT and acquire a suitable hyperspectral data set to simulate the PRISMA data and test the developed algorithms,
- 2. Get possibly contemporaneous Hyperion and ASTER data to use the data set also to simulate HyspIRI data
- 3. Organize a contemporary in situ campaign to acquire surface and atmospheric parameters and validate the airborne data and complete a spectral library for Mt. Etna different lava flows.
- 4. Define a vicarious test site in Noth Africa in the Algerian desert year

Etna airborne campaign 2012

	GROUND ACTIVITIES	AIRBORNE AND SPACEBORNE ACQUISITION
23.06.2012	MILO Logistic activities Ground instrument TEST and fieldspec measurements	Hyperion acquisition
24.06.2012	BRONTE Start ground measurements FieldSpec ETNA Set up sun photometer Paternò Site ispection	TEST FLIGHT BY CGIAM
25.06.2012	ETNA Thermal termica, Unilogger FTIR (Pian del Lago) FieldSpec (Strada Forestale ed Etna Nord)	TERRA-ASTER Flight over ETNA Flight altitude: 5000 slm Time sart : 8:00 (local)
26 .06 2012	PATERNO' FieldSpec, Unilogger Laser Scanning	EO1- HYPERION Flight over PATERNO Flight altitude: 1000m slm Time stat: :9:00-9:30 (local)
27. 06-2012	FORNAZZE FieldSpec	

AIRBORNE SYTEM

CGIAM PARTNER WAS IN CHARGE OF THE AIRBORNE SYSTEM AND FLIGHTS

GPS

NAVIGATION AND RECORDING SYSTEM

- CCNS (Computer Controlled Navigation System) finalizzato al controllo del volo e dei sensori.
- 2. **AEROcontrol** System for positioning , it integrates GPS data at 24 channels at 2Hz and data from
- IMU-IId (Inertial Measurement Unit) a 256Hz based on gyro in fiber optics fibra ottica.The. computer also ensure the registration on data card of raw data from IMU and

SENSOR SYTEM

- HYPERSPECTRAL CAMERA
- LIDAR
- THERMAL CAMERA
- OPTICAL CAMERA
- ► NAVIGATION AND REGISTRATION SYSTEM
- SYSTEM BOARD

PUSH-BROOM system with 2 spectrometer in the VNIR-SWIR range, the spectrometer were purchased from SPECIM

The systems case perimits to operate the cameras also from the ground

	VNIR	SWIR
Spectrometer Name	ImSpector V10E / Specim	ImSpector N25E / Specim
Spectral Range	400-1000 nm	1000-2500 nm
Spectral Resolution	2.8 nm	10 nm
Spectral Sampling	1.2 nm	6.3 nm
Spectral bands	504	239
Spatial pixels	1024	320
Digital resolution	12 bit	14 bit
FOV	68.64°	36°
Focal length	9 mm	15 mm

The LiDAR (Riegl LMS– Q560) permits the Full Waveform Analysis .

The laser beam (Eye Safety Class) the works in the near IR frequency inviato

CARATTERISTICHE LASER				
Lunghezza d'onda	1550 nm			
Durata dell'impulso	3.5 ns			
Divergenza del fascio	0.5 mrad			
Classe del laser	Classe 1			
Distanza di sicurezza	0 m			
METODOLOGIA ACQUISIZIONE				
Metodo di scansione	Specchio Poligonale Rotante			
Velocità di rotazione specchio	5 – 160 KHz			
Frequenza impulsi	40 – 240 KHz			
Massimo angolo di scansione	60°			
Numero Massimo di echi registrati	Illimitato			
Frequenza di campionamento Digitalizzatore	1 GHz			
Metodo rilevamento impulso	Full Waveform			
Range dinamico intensità segnale	16 bit			
PRECISIONE E RISOLUZIONE				
Precisione Range (2 sigma)	2 cm			
Precisione elevazione (2 sigma)	6 cm @ 1,000 m AGL			
Precisione planimetrica complessiva (2 sigma)	0.30 cm @ 1,000 m AGL			
Max. # punti/m²	156 points @ 50 m AGL, 30 kts			

THERMAL CAMERA DigiTHERM

Range Spettrale	7.5 - 14 μm		
Dimensione del pixel	25 μm		
Dimensione della testa del sensore	16 X 12 mm		
Range di Temperatura	- 40° -120° C		
Intervallo di temperatura per l'operatività	-15 +50°C		
Microbolometro non raffreddato FPA (Focal Plane Array)	640 X 480 pixel		
Massima Frequenza di scatto	6 Hz		
Range dinamico	16 bit		
PRECISIONE E RISOLUZIONE			
Accuratezza di misura	+/- 1.5K(0°100°C) Altrimenti +/- 2K		

DigiTHERM è un sistema professionale di camera termica aereotrasportato.

• METRIC CAMERA DigiCAM H-39

- Resolution: 39 Megapixel
- Storage: 2 disk 100 Gbyte
- Acquisition interval : 1,9 sec
- Filters: Color (VIS) and Colorinfrared (CIR)

Sistema aereo di acquisizione dati

System board

The systems are mounted on allumiun plate with dampers to avoid system vibration.

Calibration flight

 23.06.2012 a calibration flight to test all the system functionality on the aircraft was performed in Perugia

definition of the "boresight"
angles for each sensore

sensor tests

Flight parameters
Quota: 700 m -1400 m agl
time: 10.40 -11.15 locale
N. Flight lines 8
Directions W-E, E-W, N-S, S-N

Volo di calibrazione eseguito sull'aeroporto di Perugia il giorno 23.06.2012. In rosso le linee di volo a quota 700 metri agl, in blu quelle a 1400 metri agl.

Flight test on Mt.Etna

 On 24.06.2012 the system perfomed a test flight on Etna to verify

-Acquisition parameters (e.g. time integration, frame rate, flight velocity)

-Operational condition at the required flight altitude (4500-5000 m

flights parameters

Quota: 4500 m sml time: 9 - 11 local N flights 3 Flight dir NW-SE, SW-NE

Strisciate acquisite sull'Etna il giorno 24.06.2012. In celeste le strisciate nello SWIR, in fucsia le strisciate nel VNIR, in bianco le linee di volo.

Volo su Mt.Etna

- 25.06.2012 flight campaign on Etna
- Hyperspectral data
- Thermal camera
- Optical camera

```
Flight parameters
    Quota: 4500 m sml
    time: 9 - 11 local
    N flights lines; 8
    Flight direction NW-SE, SW-NE, SE-NW
```


Strisciate acquisite sull'Etna il giorno 25.06.2012. In celeste le strisciate nello SWIR, in fucsia le strisciate nel VNIR, in bianco le linee di volo.

Flights on Paternò area

- 26.06.2012 flight campaign on Paternò :
- hyperspectral data
- Lidar data
- thermal camera
- optical camera

flight parameters on Paternò Quota : 1000 m agl time: 9.15 - 10.15 local N fligts lines: 10 Direction SE-NW, NW-SE

Strisciate acquisite su Paternò il giorno 26.06.2012. In celeste le strisciate nello SWIR, in fucsia le strisciate nel VNIR, in bianco le linee di volo.

SATELLITE DATA ACQUISITION

Thanks to the collaboration and support of NASA-GODDARD and NASA-JET PROPULSION LABORATORY

HYPERION and ASTER have been acquired during the flights over Etna and Paternò area

Acquired Satellite Data

Aster 25 Giugno 2012 – 09:53 UTC

Hyperion 23 - 26 - 28 Giugno 2012

FIELD CAMPAIGN

The field campaign has been dedicated to acquire surface spectral characteristics, texture, temperature, emissivity and local atmospheric parameters

The data will be use to validate both airbone and spaceborne data

Instrument used :

- Fieldspec
- ground Laser Scanning
- GPS
- thermal camera
- sun photometer
- Unilogger to record continuous meteo station data and ground temperature
- Micro-FTIR

Measurment sites

- rock spectra related to different Etna lava flows
- Ground laser scanner to analyse the surface texture

I dati sono divisi per strumentazione (FieldSpec o Laser 3D) e per periodo di acquisizione. I dati sono proiettati sulla nuova cartografia geologica alla scala 1:50000 dell'Etna.

Fieldspec measurements

Laser Scanning

Campione preso sulla colata 1852-1853 tra Milo e Fornazzo

Modello acquisito con il laser Konica Minolta VI-910 3D

Modello ricostruito con tecnica "Structure from Motion" da una sequenza di foto.

Lava optical photo and foto 3D models derived from Laser 3D and from the system "structure from motion"

Thermoteknix System Ldt VisIR 640

The collected images have been acquired from 9.40 AM local time up to 12.26 AM local time

Snow deposits covered by ash

The sun photometer e l'unilogger have been used to acquire information on the atosphere

PRELIMINARY DATA ANALYSIS

HYPERSPECTRAL DATA :

DN calibration to radiance

Preliminary geocoding

Strip 1 su M. Etna – Composizione CIR (814.66nm 694.03nm 574.20nm)

VNIR SPECTROMETER IMAGE

Spectra inside the plume

Spectra on the sulfur deposits

SWIR SPECTROMETER IMAGE

Spectra inside the plume

Spectra on the sulfur deposits

THERMAL CAMAERA :

- radiometric correction
- geometric correction

Airborne Lidar Data

- Conversion of impulse
- Geocoding of acquired points

CONCUSION

In the coming months both ground measurements analysis and airborne data calibration will continue in order to prepare suitable data set for the algorithms developed in the ASI-AGI project

Atmospheric corrections will be applied to selected flight lines

The satellite data will be also processed to retrieve reflectance and emissivity

Ground data will be prepared to create a spectral library for Etna lava flows end menbers

A complete campaign report will be published in english in the next months

We are aviiable to collaborate with HyspIRI scientists interested to the data set

WE ARE VERY THANKFUL TO

ALL THE ASI-AGI CAMPAIGN TEAM and INGV COLLEAGUES FROM CATANIA WHO HELP US IN ALL THE MEASUREMENTS ON ETNA and PATERNO

ASI PRISMA TEAM

THE NASA-GODDARD and JET PROPULSION LABORATORY FOR CONSTANT SUPPORT IN ACQUIRING HYPERION AND ASTER DATA

