

New evapotranspiration CalVal sites in interior Alaska: Preparatory science for NASA's planned HyspIRI mission

A. Prakash⁽¹⁾, J. Cristóbal⁽¹⁾, J. Fochesatto⁽¹⁾, D. Starkenburg⁽¹⁾, R. Gens⁽²⁾, D. Kane⁽¹⁾, J. G. Alfieri⁽⁴⁾, K. Irving⁽¹⁾, M. C. Anderson⁽⁴⁾, and W. P. Kustas⁽⁴⁾

(1)University of Alaska Fairbanks; Alaska Satellite Facility; (3) US Department of Agriculture

2012 HyspIRI Science workshop; Oct 18 (Thursday), 1.20 pm

More info: www.et.alaska.edu

- 1. Introduction
- 2. Operational ET CalVal sites in Alaska
- 3. Imnavait Creek site
- 4. New ET CalVal sites: UAF and Caribou Poker Creek Research Watershed
- 5. TSEB and DTD model application in a tundra environment using MODIS and Landsat data
- 6. Future research

- Evapotranspiration (ET) is a critical component of the hydrologic cycle in Alaska
- As we witness increasing climate warming, permafrost degradation, forest fire occurrences, and significant LULC changes, ET will become more important
- Alaska has general paucity of CalVal sites that acquire essential climate variable (ECV) and ET relevant data.

Credits: Rudi Gens, ASF

Credits: David Wright, USFS

Credits: ADF&G

- To measure representative ET values for typical tundra (Arctic) and typical boreal forest (sub-Arctic) environments.
- To estimate and upscale ET from visible, near infrared, and thermal infrared remote sensing data → TSEB and DTD models in summer conditions.

Credits: Toolik field station, UAF

Credits: UAF ET project team

Operational ET CalVal sites in Alaska

Imnavait Creek

68°40'0"N

68°35'0"N

Imnavait Creek

0→ Scintillometer and meteorological station (2009-2011 summers)

- 1→ Fen flux station
- 2→ Tussock flux station
- 3→ Ridge flux station
- 4→ Radiation tripod

0: Managed by D. Kane and J. Fochesatto

1-4: Managed by → Institute of Arctic Biology-UAF

New ET CalVal sites: UAF and Caribou Poker Creek Research Watershed

UAF north campus site

Needleleaf evergreen forest → "flat" area

Overstory:

Black spruce (*Picea mariana*)

- → cover: ~60%
- ➔ mean tree height: ~5 m

Understory:

→Small shrubs: Betula nana, Ledum palustre, Vaccinium sp.

➔Moss layer: Sphagnum sp.

Eddy covariance and radiation systems

Canopy Flow Sensors at 24 m: Sonic anemometer and gas analyzer, net radiation and air temperature.

Air temperature at 7m.

Sub-canopy Flow Sensor at 3m: Sonic anemometer, air temperature, relative humidity and pressure.

Geothermal flux system (G)

→ Designed to account for both organic and soil layers
→ one G system sample

1 m

Scintillometer configuration

At same height (24m) and path than the flux tower

➔ flux upscalling

Deciduous forest → "hilly" area

Overstory:

Mainly paper birch (*Betula papyrifera*)

- → cover: ~90%
- → mean tree height:~18m

Understory:

→Small shrubs: Ledum palustre, Vaccinium sp.

➔Moss layer: Sphagnum sp.

Eddy covariance and radiation systems

Canopy Flow Sensors at 23 m: Sonic anemometer and gas analyzer, net radiation, air temperature and relative humidity.

Geothermal flux system (G)

- → Designed to account only for soil layer → thin organic layer
- → two G system samples

1 m

Challenges

- Power
- Solar illumination
- Temperature
- Subsidence
- Maintenance

Dual Time Difference -DTD- (Norman et al. 2000) *and Two Source Energy Balance TSEB- (*Kustas and Norman, 2000) *main inputs:*

- Remote sensing data→ LAI and LST (TERRA/AQUA MODIS) and LST (Landsat-5 TM)
- Meteorological data > Net radiation, air temperature, wind speed and atmospheric pressure

T_A: Air temperature

 T_{AC} : Air temperature in the canopy

H: Sensible heat flux integration \rightarrow H from the canopy (H_c) and H from the soil (H_s).

R_A: Aerodynamic resistance

R_x: bulk leaf boundary layer resistance

- $\rm R_s:$ soil surface boundary layer resistance
- T_{RAD}: surface temperature
- f(0): Cover fraction:
- → Clumping factor between 0.87 0.89
- → LAI variability from 1.4 to 2.3

1- DTD remote sensing data

Period	Satellite	n	Date	Product
2008	TERRA/ AQUA MODIS	11	13/07/2008 24/07/2008 13/08/2008 16/08/2008 20/08/2008 24/08/2008 01/09/2008 02/09/2008 03/09/2008 06/09/2008 07/09/2008	•LAI (MOD15/MYD15) •LST (MOD11/MYD11)

2-TSEB remote sensing data

Period	Satellite	n	Date	Product
2009	Landsat-5 TM	3	05/07/2009 21/07/2009 06/08/2009	•Level-1T
	TERRA MODIS			•LAI (MOD15A2) •Water vapor (MOD05)

DTD results: MODIS

TSEB results: Landsat

	LE	Н	G
R ²	0.92	0.78	0.70
RMSE*	22	23	33
MBE*	-13	-18	31
MAE*	20	18	31

LE Н G \mathbb{R}^2 0.36 0.76 0.40 RMSE* 51 41 41 MBE* 50 12 9 MAE* 38 36 51

* in $W \cdot m^{-2}$

* in W·m⁻²

- 1) Field sites are well positioned and working well
- 2) Data QA/QC in place
- 3) Site will provide data useful for broader research
- 4) Results of DTD and TSEB in the Arctic site are encouraging
- 5) HyspIRI will be able to provide higher spatial resolution and high temporal resolution data for high latitudes making DTD a practical model for generating satellite based ET products.
- 6) At new sites we will implement
 - 1) DTD and TSEB
 - 2) Daily energy flux integration using ALEXi/DisALEXI model (Anderson *et al.*, 2007).
- 7) Energy fluxes upscaling validated by scintillometer data.
- 8) Energy balance computation in snow conditions.

Thanks for your attention

