

Benchmarking of the HyspIRI VSWIR Compression, Level 1 and Level 2 Algorithms

Sarah Lundeen, Robert O. Green, Bo-Cai Gao, Didier

Overview

- Challenge and Objective
- HyspIRI VSWIR data rates and volumes
- On-board VSWIR compression
- Ground processing Level 1 data
- Ground processing Level 2 data
- Summary and Conclusions

Challenge and Objective

- HyspIRI is a high data rate and volume mission at ~ 1 terabit per orbit and 14 orbits per day
- This data rate lead to challenges of handling the data on the satellite, downlinking the data, and processing the data on the ground
- HyspIRI has mission baseline solutions at all elements of data handling
- The objective of the testing and benchmarking is to demonstration the viability of the solutions using HyspIRI like data
- This work validates the cost estimates and reduces the risk of the HyspIRI

HyspIRI Mission Architecture

HyspIRI Downlink Data Volume

	Rate	On-board Compressio n
VSWIR_land	804.1 Mb/s	3:1
VSWIR_shallow	865.9 Mb/s	3:1
VSWIR_ocean	3.9 Mb/s	3:1
TIR_land	130.2 Mb/s	2:1
TIR_shallow	130.2 Mb/s	2:1
TIR_ocean	0.6 Mb/s	2:1

	Avg (Tb)	Min (Tb)	Max (Tb)
Per Day	4.64	3.59	5.29
Per Orbit	0.31	0.00	0.81

Total downlinked data volume for the 3 year mission: 5024

- Baseline selected to minimize system level cost and risk
- On-board storage capacity
 - 1 Tb
 - 0.31 Tb/orbit
- WorldView-1 and -2 have 2.2 Tb SSR
 - WorldView1: 0.33 Tb/orbit
 - Different downlink strategy requires larger SSR than HyspIRI
 - WorldView2: 0.52 Tb/orbit
- 30% margin added to calculated required SSR size

Fast Lossless Compression Algorithm

- **Objective:** State-of-the-art lossless compression, with low complexity (i.e., fast)
- **Approach**: *Predictive compression* that adapts to the data via the sign algorithm (a variation of the *least mean square (LMS) algorithm*) (see boxes below)
- **Compared** to *Transformed-based compression techniques* (such as DCT, Wavelet transform), this approach:
 - requires fewer arithmetic operations and less memory, simplifies data handling, and is more straightforward to implement (in software, DSP, or hardware)
 - yields significantly faster lossless compression
 - But provides only lossless (and potentially near-lossless) compression

Predictive Compression

- Encodes samples one-at-a-time, typically in raster scan order
- Estimates sample value probability distribution from previously encoded samples. These estimates are used to efficiently encode the sample value.
- The difference between an estimated sample value in the actual sample value is encoded in the compressed bitstream.

The sign algorithm and the LMS algorithm are members of a family of low complexity adaptive linear filtering techniques.

- Used extensively in signal processing applications
- Used for compression of audio data
- Not previously well studied for image or hyperspectral data compression

FL Compression Testing with AVIRIS-Classic

Comparison for raw AVIRIS Data

Compressor	rate (bits/ sample)
JPEG-LS (2D)	4.73
GSFC/USES Multispectral	3.89
ICER-3D	3.23
Fast Lossless	2.81

Compression performance averaged over 19 uncalibrated AVIRIS hyperspectral test data sets.

Tests using 19 uncalibrated AVIRIS data sets:

- original sample size: 12 bits/sample
- data size: $(614 \times 512 \text{ pixels} \times 224 \text{ bands})$

 $(680 \times 512 \text{ pixels} \times 224 \text{ bands})$

Methods:

JPEG-LS: is most efficient for 2D; USES uses chip;

ICER-3D SOA (MER rovers)

>4X compression.

About 40% lower bit rate than state-of-the-art 2D approach.

FL Compression Algorithm Features

- Performance: good compression effectiveness
- Robust; requires no training data or other specific information about the nature of the spectral bands for a fixed instrument dynamic range
- **Simple**: well-suited for implementation on FPGA hardware and easily parallelizable
- Low computational complexity. required operations per sample are:
 - 6 integer multiplications
 - 25 integer addition, subtraction, or bit shift operations
 - Golomb coding operations
- **Modest memory requirement**: enough to hold one spatial-spectral slice of the data (e.g., ≤300 Kbytes for AVIRIS data with 224 bands and 680 samples/line)
- Instrument: well-suited to push broom instruments

AVIRIS Next Generation First Spectra 120422

Scrolling Display

Michael Eastwood

Early Test of AVIRIS-NG Like Data

- This test shows compression of > 5X
- HyspIRI baseline is 3X

Real-time Data Compression for HyspIRI

- Developed an FPGA implementation of the Fast Lossless (FL), a state-of-the-art lossless HSI compression algorithm providing compression performance up to 4:1.
- Implemented on a commercial Virtex 5 (equivalent to V5 Radhard device). Compresses one sample every clock cycle, a speed of 40 MSample/sec with total power of 700 mW.
- FL compression implementation is currently being tested in National Instruments PXI environment which includes a PXIe-7966R board with Xilinx Virtex-5 SX95T and two 256MBytes DRAMs. The test system is connected to the airborne AVIRIS-NG HSI instrument and will be compressing HSI data in real-time on the plane.

Carnegie Airborne Observatory:
A sample image
640(width) x 512(length) x 427(bands),
13 bits per sample
Compression rate: 2.366 bits/sample

PXIe-7966R Board with Xilinx Virtex-5 SX95T

Virtex-5 Device Utilization Summary (CBE)				
Logic Utilization	Used	Available	Utilization	
# Slice Registers	15715	58880	26.7%	
# Slice LUTs	24155	58880	41%	
# Block RAM	76	244	31.1%	
# DSP48s	6	640	0.9%	

HyspIRI VSWIR Level 1 and 2 Algorithm Benchmarking Level 0-1 AVIRIS-CL/AVIRIS-NG Data Flow

Level 1 and Level 2 and The Signal

Atmospheric Correction

The measured radiance at the satellite level can be expressed as:

$$L_{obs} = L_a + L_{sun} t \rho \tag{1}$$

L_a: path radiance;

ρ : surface reflectance;

L_{sun}: solar radiance above the atmosphere;

t: 2-way transmittance for the Sun-surface-sensor path

Define the satellite apparent reflectance as

$$\rho^*_{\text{obs}} = \pi L_{\text{obs}} / (\mu_0 E_0) \tag{2}$$

$$\rho_{obs}^* = T_g [\rho_a + t \rho / (1 - \rho s)]$$
 (3)

By inverting Eq. (3) for ρ , we get:

$$\rho = (\rho_{obs}^*/T_g - \rho_a^*) / [t + s (\rho_{obs}^*/T_g - \rho_a^*)]$$
 (4)

Gao, B.-C., K. H. Heidebrecht, and A. F. H. Goetz, Derivation of scaled surface reflectances from AVIRIS data, *Remote Sens. Env.*, 44, 165-178, 1993.

AVIRIS-NG Orthorectification Test

Raw Data

Successful Orthorectification

AVIRIS-NG Orthorectified

HyspIRI VSWIR Level 1 and 2 Algorithm Prototyping - Hardware Components of Windows 2008 Server

Server

•OS: 64-bit Windows Server 2008

•Processor: Dual Intel Xeon X5560 2.80GHz Quad-Core

Processors

•Memory (RAM): 24.0 GB ECC DDR3

Storage

- •4 RAID arrays populated with 24, 2TB 7200 RPM 64 MB Cache Enterprise Class SATA II HDD's
- •4Gb Fibre Channel to SAS/SAS(SATA) Controller RAID Unit
- •Total of 156 TB usable storage

Backup Storage

•iNAS 36 bay populated with (36) 4TB 7200 RPM 64 MB SATA II HDDs – Total 116 TB usable storage

HyspIRI VSWIR Level 1 and 2 Algorithm Benchmarking AVIRIS-Classic

Data Set Type	Windows Server 2008	Beowulf Cluster – Single Node	Beowulf Cluster – 26 Nodes
AVIRIS- Classic	- Rad Cal: 353 GB in 761 min →7.9 MB/s - Ortho: 35.7 GB in 63 min →9.6 MB/s -ATREM: 732.6 GB in 1375 min →9.1 MB/s	- Rad Cal: 3.6 GB in 11 min → 5.6 MB/s	- Rad Cal: 90.1 GB in 11.5 min → 133.7 MB/s - Ortho: ~390 MB/s

HyspIRI VSWIR Level 1 and 2 Algorithm Benchmarking

Hardware Components of Beowulf Cluster

Traditional Beowulf Cluster - 27-node, 336 Processor Cores

Head Node

- •OS: LinuCentOS 6.0
- •Processor: (2) Intel Westmere E5650 2.66GHz, Hexa-Core
- Processors Total of 12 cores
- •Memory (RAM): (6) 8GB ECC DDR3 Total 48GB
- •Local Storage: (2) 1TB Mirrored HDD's Total 1 TB usable storage

Compute Nodes

- •OS: LinuCentOS 6.0
- •Processor: (2) Intel Westmere E5650 2.66GHz, Hexa-Core
- Processors Total of 12 cores
- •Memory (RAM): (6) 8GB ECC DDR3 Total 48GB
- •Local Storage: (2) 1TB striped disks Total 2 TB usable storage

Storage Node

- •OS: LinuCentOS 6.0
- •(16) 3TB enterprise server disks configured under RAID-6 array Total 39TB usable storage after configuration
- •Processor: (2) Quad-core Intel Westmere E5620 2.40GHz Total 8 cores
- •Memory (RAM): (6) 4GB ECC DDR3 Total 24GB

Backup Storage

•iNAS 36 bay populated with (36) 4TB 7200 RPM 64 MB SATA II HDDs – Total 116 TB usable storage

HyspIRI VSWIR Level 1 and 2 Algorithm Benchmarking AVIRIS-Next Generation

Data Set Type	Windows Server 2008	Beowulf Cluster – Single Node	Beowulf Cluster – 26 Nodes
AVIRIS- Next Generation	- Rad Cal: 13 GB in 96 min → 2.3 MB/s	- Rad Cal: 110.83 GB in 179 min → 10.6 MB/s	- Rad Cal: ~276 MB/ s
Ceneration	- Ortho: 31.9 GB in 185 min →2.9 MB/s	- Ortho: 100.8 GB in 106.5 min → 16.2 MB/s	Ortho: ~420 MB/sATREM: ~228 MB/s
	- ATREM: 33.6 GB in 79 min → 7.3 MB/s	- ATREM: 31.9 GB in 62 min →8.8 MB/s	

HyspIRI VSWIR Level 1 and 2 Algorithm Benchmarking

Radiometric Calibration, Orthorectification, and ATREM Processing Speed

HyspIRI VSWIR daily uncompressed (at16 bits) data volumes:

Minimum: 849 GB

Mean: 1229 GB

Maximum: 1436 GB

Estimated Processing Time of Uncompressed HyspIRI VSWIR using 26-node Beowulf Cluster			
Processing Algorithm	Minimum Daily Rate	Mean Daily Rate	Maximum Daily Rate
Radiometric Calibration	53 min	76 min	88 min
Orthorectification	34 min	50 min	58 min
ATREM	64 min	92 min	108 min
Total	151 min/2.5 hrs	218 min/3.6 hrs	254 min/4.2 hrs

Summary and Conclusion

- HyspIRI VSWIR data rates and volumes are high by current standards and could represent a risk to implementation and cost estimates.
- The HyspIRI Mission concept team has be testing algorithms and implementation approaches to demonstrate the validity of the HyspIRI Mission concept
- The on-board VSWIR FL compression algorithm is now being tested in the flight like FPGA implementation
- HyspIRI analog ground Level 1 and Level 2 data processing algorithms are being tested with AVIRIS-Classic and AVIRIS-Next Generation data sets
- Scaling these benchmarking results shows that the HyspIRI mission concept is viable for on-board compression and ground processing of Level 1 and Level 2.
- There may be options for improved implementation margins and reduced costs in the HyspIRI mission concept in these areas

HyspIRI Decadal Survey Mission

Key Science and Science Applications

Climate: Ecosystem biochemistry, condition & feedback; spectral albedo; carbon/dust on snow/lce; biomass burning; evapotranspiration

Ecosystems: Global plant functional-type, physiological condition, and biochemistry including agricultural lands.

Fires: Fuel status, fire occurrence, severity, emissions, and patterns of recovery globally.

Coral reef and coastal habitats: Global composition and status.

Volcanoes: Eruptions, emissions, regional and global impact.

Geology and resources: Global distributions of surface mineral resources and improved understanding of geology and related hazards.

Measurement:

Imaging Spectrometer (VSWIR)

- 380 to 2500 nm in 10nm bands
- 60 m spatial sampling
- 19 days revisit
- -Global land and shallow water Thermal Infrared (TIR):
- 8 bands between 4-12 µm
- 60 m spatial sampling
- 5 days revisit
- -Global land and shallow water IPM-Direct Broadcast

Mission Urgency:

The HyspIRI science and application objectives are important today and uniquely addressed by the combined imaging spectroscopy, thermal infrared measurements, and IPM direct

Mission Concept Status:

Preliminary Draft Program Level 1 Requirements: Stable

Payload: Imaging Spectrometer, Thermal Infrared Imager, and

IPM-Direct Broadcast subset

Spacecraft: Small **Payload:** JPL/GSFC

Launch Vehicle: ~1000 kg class

Launch date: TBC (partner opportunitie

Mission: Class C 3-5 years

Trajectory or Orbit: LEO, Sun sync.

S/C & Instrument Mass: 561 kg (30% margin) S/C & Instrument Power: 650W (66% margin)

Backup

HyspIRI VSWIR Level 1 and 2 Algorithm Prototyping - Radiometric Calibration, Orthorectification, and ATREM Processing

Speed

Data Set Type	Windows Server 2008	Beowulf Cluster – Single Node	Beowulf Cluster – 26 Nodes
AVIRIS- Classic	- Rad Cal: 353 GB in 761 min → 7.9 MB/s - Ortho: 35.7 GB in 63 min → 9.6 MB/s - ATREM: 732.6 GB in 1375 min → 9.1 MB/s	- Rad Cal: 3.6 GB in 11 min → 5.6 MB/s - Ortho: Unable to test - ATREM:Unable to test	- Rad Cal: 90.1 GB in 11.5 min → 133.7 MB/s - Ortho: ~390 MB/s
AVIRIS- Next Generatio n	- Rad Cal: 13 GB in 96 min → 2.3 MB/s - Ortho: 31.9 GB in 185 min → 2.9 MB/s -ATREM: 33.6 GB in 79 min → 7.3 MB/s	- Rad Cal: 110.83 GB in 179 min → 10.6 MB/s - Ortho: 100.8 GB in 106.5 min → 16.2 MB/s - ATREM: 31.9 GB in 62 min → 8.8 MB/s	- Rad Cal: ~276 MB/s - Ortho: ~420 MB/s - ATREM: ~228 MB/s

HyspIRI VSWIR Level 1 and 2 Algorithm Prototyping - Radiometric Calibration, Orthorectification, and ATREM Processing Speed cont.

Estimated Processing Time of Uncompressed HyspIRI VSWIR using 26-node Beowulf Cluster				
Processing Algorithm	Minimum Daily Rate	Mean Daily Rate	Maximum Daily Rate	
Radiometric Calibration	53 min	76 min	88 min	
Orthorectification	34 min	50 min	58 min	
ATREM	64 min	92 min	108 min	
Total	151 min/2.5 hrs	218 min/3.6 hrs	254 min/4.2 hrs	

HyspIRI VSWIR daily uncompressed (unconverted to 16 bit) data volumes:

Minimum: 849 GBMean: 1229 GB

M : 1426

- Maximum: 1436 GB