Field Validation of PRISM: Portable Remote Imaging SpectroMeter

Dr. Heidi Dierssen
University of Connecticut
Department of Marine Sciences/Geography

07/20/2012 19:11
Earth’s Living Ocean: ‘The Unseen World’

An advanced plan for NASA’s Ocean Biology and Biogeochemistry Research

2006
OBB Plan outlines: Portable Sensors from Suborbital Platforms

- Imagery with spatial resolution of meters or less
- Mapping and tracking fine-scale features along coastal margins, including river plumes, flooded land regions, and seafloor features
- Hazardous and episodic events require repeat sampling on the order of hours and not days or weeks
- Water quality of inland lakes, rivers, and coastal estuaries

Seagrass Leaf Area Index (LAI) and shallow water bathymetry 0-6 m estimated from the PHILLS sensor at Lee Stocking Island, Bahamas.

A dense algal bloom or red tide in Monterey Bay measured from C) SeaWiFS satellite imagery at 1 km resolution and D) AVIRIS airborne imager at 30 m resolution.
Timeline

<table>
<thead>
<tr>
<th>Mission Themes</th>
<th>Immediate (1–5 Years)</th>
<th>Near-Term (5–10 Years)</th>
<th>Long-Term (10–25 Years)</th>
<th>Ecosystems</th>
<th>Biochemistry</th>
<th>Habitats</th>
<th>Hazards</th>
</tr>
</thead>
<tbody>
<tr>
<td>Global Separation of In-water Constituents & Advanced Atmospheric correction</td>
<td>Advanced radiometer & scattering lidar
• 5nm resolution from UV through visible
• Ozone & extended NIR atmosphere bands
• Atmosphere & subsurface particle scattering profiles</td>
<td>Ocean radiance and atmosphere aerosols
• Advanced radiometer
• Scattering lidar for aerosol speciation
• Polarimeter for global aerosol coverage
• 500 m passive resolution</td>
<td>Radiometry, aerosols, and physiology lidar
• Global radiometry system
• Aerosol height & species
• Midnight/noon obs of variable stimulated fluorescence</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>High Spatial & Temporal Resolution Coastal</td>
<td>Coastal carbon – GEO Support analysis of current satellite data
Landsat DCM partnership
Development of suborbital sensor systems</td>
<td>High-res coastal imager
• 20 bands from UV - NIR
• 10 m res – 100 km swath
GEO carbon mission
Deployment of suborbital systems</td>
<td>Constellation of imaging spectrometers
• High temporal res
• LEO, MEO or GEO
• Include SAR
Continued deployment of suborbital systems</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plant Physiology & Functional Composition</td>
<td>Support analysis of global passive data
• Assess functional groups using hyperspectral data
• Estimate algal carbon & chlorophyll to characterize physiology</td>
<td>Support analysis of global & GEO data</td>
<td>Variable fluorescence lidar constellation
• Map physiological provinces at different times of day
• Dawn/dusk variable fluorescence lidar
• Noon/midnight lidar</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mixed Layer Depth</td>
<td>Synthesis/analysis of observational forecast fields & on orbit remote sensing
Mixed layer model development</td>
<td>Prototype mixed layer sensor development
• Field testing of novel approaches for remote detection of mixed layer depth & light availability</td>
<td>Mixed layer depth mission
• Space-borne proof-of-concept mission for global mixed layer depth mapping</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bold Green Text Represents Satellite Missions
Bold Blue Text Represents Development Activities leading to Missions
Cross-hatch indicates secondary contribution to Mission Theme

Top Priority Science Question

- **How are ocean ecosystems and the biodiversity they support influenced by climate or environmental variability and change, and how will these changes occur over time?**
 - Color Code: Red
 - Example of Benefits to Society: Improved management of ecosystem goods and services

- **How do carbon and other elements transition between ocean pools and pass through the Earth System, and how do biogeochemical fluxes impact the ocean and Earth's climate over time?**
 - Color Code: Blue
 - Example of Benefits to Society: Information based policy on greenhouse gas emissions and nutrient loading

- **How (and why) is the diversity and geographical distribution of coastal marine habitats changing, and what are the implications for the well-being of human society?**
 - Color Code: Green
 - Example of Benefits to Society: Mapping and assessment of coastal habitats for future development plans and tourism

- **How do hazards and pollutants impact the hydrography and biology of the coastal zone? How do they affect us, and can we mitigate their effects?**
 - Color Code: Yellow
 - Example of Benefits to Society: National security and improved forecasting of natural and human-induced hazards
2.1 Development of airborne instrument

NASA’s Ocean Biology and Biogeochemistry program, in partnership with the Airborne Science Program within the Earth Science Division, is soliciting a project that seeks to develop a portable sensor from airborne (e.g., aircraft, Unmanned Aerial Systems (UAS)),

Instruments proposed should be focused on radiometry to enable estimation of ocean biological and biogeochemical properties, specifically to encourage broad NASA ocean research community use. A field test plan of the instrument must be included in the proposed statement of work, along with a clearly defined plan for instrument calibration.
Optical design of a coastal ocean imaging spectrometer

Pantazis Mouroulis, Robert O. Green, and Daniel W. Wilson

Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109, USA
*Corresponding author: pantazis.mouroulis@jpl.nasa.gov

Abstract: We present an optical design for an airborne imaging spectrometer that addresses the unique constraints imposed by imaging the coastal ocean region. A fast (F/1.8) wide field system (36°) with minimum polarization dependence and high response uniformity is required, that covers the spectral range 350-1050 nm with 3 nm sampling. We show how these requirements can be achieved with a two-mirror telescope and a compact Dyson spectrometer utilizing a polarization-insensitive diffraction grating.
PRISM Sensor

- UV-NIR sensor
 - 350-1050 nm
- Approx. 3 nm spectral resolution
- Up to 30 cm spatial resolution
- Two-channel SWIR radiometer
- Zakos Mouroulis talk tomorrow
Objective

• First science flight of NASA’s new PRISM sensor
 – Portable Remote Imaging Spectrometer
• July 17-28 2012
• Validate spectra obtained over diverse coastal targets

Photo by Eric Heupel
Field Validation was a Large Collaborative Effort

- UConn
- NASA JPL
- Naval Research Lab
 - Gao for atmospheric correction
- NASA Ames
 - Liane Guild and crew
- University of Santa Cruz
 - Raphael Kudela and crew
- Moss Landing Marine Labs
 - Jason Smith and Facilities
- Monterey Bay Aquarium Research Institute
 - John Ryan
Site with Diverse Coastal Habitats
And excellent weather
Quasi True Color

Chlorophyll
• Hourly flight lines oriented with sun

• Clearing in the afternoon
Intercalibration of sensors
Inherent Optical Properties (IOP) Package
IOP Package
Lab Work

- Filters
 - Total suspended matter
 - HPLC Pigment analysis
 - *Chl-a* measurements

- Eelgrass leaf measurements
• Station 2, Monterey Bay
- Station 4, Monterey Bay

LISST

Volume per Liter

Particle size (μm)

Particles per Liter Normalized to Bin Width

Particles per Liter

Slope = -3.63
• Station 14, Elkhorn Slough, ebb tide
• Station 22, Elkhorn Slough, high slack

LISST

[Graphs showing volume per liter and particles per liter normalized to bin width.]

- Volume per Liter
 - Y-axis: Volume per Liter (µL/L)
 - X-axis: Particle size (µm)
 - Pink line indicating irregular increases in volume.

- Particles per Liter Normalized to Bin Width
 - Y-axis: Particles per Liter
 - X-axis: Particle size (µm)
 - Blue line showing a decrease with a slope of -3.57.

Slope = -3.57
400GB of imagery was obtained

The PRISM sensor was integrated into a Twin Otter aircraft:

• 12 lines over Elkhorn Slough and the Monterey Bay shelf at 3,500 ft (~1m/pixel)
• 3 lines at 10,500 ft (~3m/pixel) extending 40 km into the bay and over the M1 mooring
• 5 lines over Pinto Lake at 3,500 ft
Preliminary Image Processing Atmospheric Correction

- Calibrated and Orthorectified by JPL

- Bo-Cai Gao Naval Research Lab

- Modified ATREM model with sun glint and cloud removal.
Sample Spectrum After 7-nm Smoothing, Sunglint + Cloud Removal – Green Water (the center pixel of the red box in the left image)
Sample Spectrum After 7-nm Smoothing, Sunglint + Cloud Removal – Green Water (the center pixel of the red box in the left image)
An Example of Sunglint + Cloud Effect Removal

Before

After – spatially contiguous water features are seen
Main Channel
with in-situ R_{rs}

- **Red Line**: Average in situ R_{rs}
- **Blue Line**: PRISM ATREM

Graph Details
- Y-axis: R_{rs}
- X-axis: Wavelength (nm)
- Wavelength range: 400 to 800 nm

Image Details
- Water body with in-situ location indicated by arrows.
East Lobos
Buoy
Validation Points
Dense Algal Blooms

Pinto Lake

• Ongoing sampling by Raphael Kudela

Date: 7/25/2012; GMT: 23:5-24.5; Local: 18:5-17.5
Line 1: [36.9636N, -121.7632W] to [36.9621N, -121.794W]; 2.74 km; Time 0.018 hr
Line 2: [36.9604N, -121.7631W] to [36.9589N, -121.7932W]; 2.68 km; Time 0.018 hr
Line 3: [36.9571N, -121.7639W] to [36.9557N, -121.7909W]; 2.49 km; Time 0.017 hr
Line 4: [36.9537N, -121.7621W] to [36.9524N, -121.7888W]; 2.31 km; Time 0.016 hr
Line 5: [36.9501N, -121.7613W] to [36.9489N, -121.7801W]; 2.23 km; Time 0.015 hr

Total Dist.: 15.32 km; Min. Time: 0.1; Azimuth: 267, SZA: 52.1
Toxic Algal Bloom *Pseudonitschia* which produces Domoic Acid

- Harbor in Monterey Wharf
- In collaboration with Jason Smith at MLML
Conclusions

• Field Validation Effort was a *Big Success*, thanks to all!

• Over 400 GB of imagery was collected

• Reflectance spectra and bio-optical properties of water and seafloor collected over diverse habitats

• Ongoing efforts to process imagery and produce habitat maps using a variety of algorithms

• Data and imagery will be available for others to play with