

# Earth's Living Ocean: 'The Unseen World'

An advanced plan for NASA's Ocean Biology and Biogeochemistry Research

2006

#### OBB Plan outlines:

#### Portable Sensors from Suborbital Platforms

- Imagery with spatial resolution of meters or less
- Mapping and tracking fine-scale features along coastal margins, including river plumes, flooded land regions, and seafloor features
- Hazardous and episodic events require repeat sampling on the order of hours and not days or weeks
- Water quality of inland lakes, rivers, and coastal estuaries



Seagrass Leaf Area Index (LAI) and B) shallow water bathymetry 0-6 m estimated from the PHILLS sensor at Lee Stocking Island, Bahamas.

A dense algal bloom or red tide in Monterey Bay measured from C) SeaWiFS satellite imagery at 1 km resolution and D) AVIRIS airborne imager at 30 m resolution

| Timeline  Mission Themes                                                     | Immediate<br>(1 – 5 Years)                                                                                                                                                        | Near-Term<br>(5 - 10 Years)                                                                                                                                                    | Long-Term<br>(10 - 25 Years)                                                                                                                                      | Ecosystems | Biogeochemistry | Habitats | Hazards |
|------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-----------------|----------|---------|
| Global Separation of In-water Constituents & Advanced Atmospheric correction | Advanced radiometer & scattering lidar  • 5nm resolution from UV through visible  • Ozone & extended NIR atmosphere bands  • Atmosphere & subsurface particle scattering profiles | Ocean radiance and atmosphere aerosols  • Advanced radiometer  • Scattering lidar for aerosol speciation  • Polarimeter for global aerosol coverage  •500 m passive resolution | Radiometry, aerosols, and physiology lidar  • Global radiometry system  • Aerosol height & species  • Midnight/noon obs of variable stimulated fluorescence       |            |                 |          |         |
| High Spatial<br>& Temporal<br>Resolution<br>Coastal                          | Coastal carbon – GEO Support analysis of current satellite data Landsat DCM partnersmp Development of suborbital sensor systems                                                   | High-res coastal imager  • 20 bands from UV - NIR  • 10 m res – 100 km swath  GEO carbon mission  Deployment of suborbital systems                                             | Constellation of imaging spectrometers  • High temporal res  • LEO, MEO or GEO  • include SAR  Continued deployment of suborbital systems                         |            |                 |          |         |
| Plant Physiology & Functional Composition                                    | Support analysis of global passive data  • Assess functional groups using hyperspectral data  • Estimate algal carbon & chlorophyll to characterize physiology                    | Support analysis of global & GEO data                                                                                                                                          | Variable fluorescence lidar constellation  •Map physiological provinces at different times of day  • Dawn/dusk variable fluorescence lidar  • Noon/midnight lidar |            |                 |          |         |
| Mixed Layer<br>Depth                                                         | Synthesis/analysis of<br>observational forecast<br>fields & on orbit<br>remote sensing<br>Mixed layer model<br>development                                                        | Prototype mixed layer sensor development  • field testing of novel approaches for remote detection of mixed layer depth & light availability                                   | Mixed layer depth mission •Space-borne proof-of- concept mission for global mixed layer depth mapping                                                             |            |                 |          |         |

Bold Green Text Represents Satellite Missions
Bold Blue Text Represents Development Activities leading to Missions
Cross-hatch indicates secondary contribution to Mission Theme

| Top Priority Science Question                                                                                                                                                       |  | Example of Benefits to Society                                                      |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|-------------------------------------------------------------------------------------|--|
| How are ocean ecosystems and the biodiversity they support influenced by climate or environmental variability and change, and how will these changes occur over time?               |  | Improved management of ecosystem goods and services                                 |  |
| How do carbon and other elements transition between ocean pools and pass through the Earth System, and how do biogeochemical fluxes impact the ocean and Earth's climate over time? |  | Information based policy on greenhouse gas emissions and nutrient loading           |  |
| How (and why) is the diversity and geographical distribution of coastal marine habitats changing, and what are the implications for the well-being of human society?                |  | Mapping and assessment of coastal habitats for future development plans and tourism |  |
| How do hazards and pollutants impact the hydrography and biology of the coastal zone? How do they affect us, and can we mitigate their effects?                                     |  | National security and improved forecasting of natural and human-induced hazards     |  |

#### NASA RFP Feb. 2008

#### 2.1 Development of airborne instrument

NASA's Ocean Biology and Biogeochemistry program, in partnership with the Airborne Science Program within the Earth Science Division, is soliciting a project that seeks to develop a <u>portable</u> sensor from airborne (e.g., aircraft, Unmanned Aerial Systems (UAS),

Instruments proposed should be focused on <u>radiometry</u> to enable estimation of ocean biological and biogeochemical properties, specifically to encourage broad NASA <u>ocean</u> research community use. A field test plan of the instrument <u>must</u> be included in the proposed statement of work, along with a clearly defined plan for instrument calibration

#### Optical design of a coastal ocean imaging spectrometer

Pantazis Mouroulis, 1\* Robert O. Green, 1
and Daniel W. Wilson 1

<sup>1</sup>Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109, USA

\*\*Corresponding author: pantazis.mouroulis@jpl.nasa.gov

Abstract: We present an optical design for an airborne imaging spectrometer that addresses the unique constraints imposed by imaging the coastal ocean region. A fast (F/1.8) wide field system (36°) with minimum polarization dependence and high response uniformity is required, that covers the spectral range 350-1050 nm with 3 nm sampling. We show how these requirements can be achieved with a two-mirror telescope and a compact Dyson spectrometer utilizing a polarization-insensitive diffraction grating.

#### **PRISM Sensor**

- UV-NIR sensor
  - 350-1050 nm
- Approx. 3 nm spectral resolution
- Up to 30 cm spatial resolution
- Two-channel SWIR radiometer
- Zakos Mouroulis talk tomorrow



#### Objective

- First science flight of NASA's new PRISM sensor
  - Portable Remote ImagingSpectrometer
- July 17-28 2012
- Validate spectra
   obtained over diverse
   coastal targets



# Field Validation was a Large Collaborative Effort

- UConn
- NASA JPL
- Naval Research Lab
  - Gao for atmospheric correction
- NASA Ames
  - Liane Guild and crew
- University of Santa Cruz
  - Raphael Kudela and crew
- Moss Landing Marine Labs
  - Jason Smith and Facilities
- Monterey Bay Aquarium Research Institute
  - John Ryan

#### Site with Diverse Coastal Habitats



## And excellent weather





Quasi True Color



Chlorophyll





 Hourly flight lines oriented with sun

Clearing in the afternoon



#### **ASD**



## Dive Spec





# Remote sensing Reflectance Spectra





#### Intercalibration of sensors



#### **ASD**



#### Inherent Optical Properties (IOP) Package



**IOP Package** 



• Filters

#### Lab Work

- Total suspended matter
- HPLC Pigment analysis
- Chl-a measurements

• Eelgrass leaf measurements



#### • Station 2, Monterey Bay



• Station 4, Monterey Bay



• Station 14, Elkhorn Slough, ebb tide



• Station 22, Elkhorn Slough, high slack



#### 400GB of imagery was obtained



The PRISM sensor was integrated into a Twin Otter aircraft:

- •12 lines over Elkhorn Slough and the Monterey Bay shelf at 3,500 ft (~1m/pixel)
- •3 lines at 10,500 ft (~3m/pixel) extending 40 km into the bay and over the M1 mooring
- •5 lines over Pinto Lake at 3,500 ft

Preliminary Image Processing Atmospheric Correction

 Calibrated and Orthorectified by JPL

 Bo-Cai Gao Naval Research Lab

 Modified ATREM model with sun glint and cloud removal.



Sample Spectrum After 7-nm Smoothing, Sunglint + Cloud Removal – Green Water (the center pixel of the red box in the left image)



### Sample Spectrum After 7-nm Smoothing, Sunglint + Cloud Removal – Green Water (the center pixel of the red box in the left image)



## An Example of Sunglint + Cloud Effect Removal After – spatially contiguous water features

are seen











#### East Lobos Buoy











## Dense Algal Blooms Pinto Lake





121.75° W

Date: 7/25/2012; GMT: 23.5-24.5; Local: 16.5-17.5
Line 1: [36.9636N, -121.7632W] to [36.9621N, -121.794W]; 2.74 km; Time 0.018 hr
Line 2: [36.9604N, -121.7631W] to [36.9589N, -121.7932W]; 2.68 km; Time 0.018 hr
Line 3: [36.9571N, -121.7629W] to [36.9557N, -121.7909W]; 2.49 km; Time 0.017 hr
Line 4: [36.9537N, -121.762W] to [36.9524N, -121.788W]; 2.31 km; Time 0.016 hr
Line 5: [36.9501N, -121.761W] to [36.9489N, -121.7861W]; 2.23 km; Time 0.015 hr

121.80° W

 Ongoing sampling by Raphael Kudela

Total Dist.: 15.32 km; Min. Time: 0.1; Azimuth: 267, SZA: 52.1

# Toxic Algal Bloom *Pseudonitschia* which produces Domoic Acid

Harbor in Monterey
 Wharf

 In collaboration with Jason Smith at MLML



#### Conclusions

- Field Validation Effort was a Big Success, thanks to all!
- Over 400 GB of imagery was collected
- Reflectance spectra and bio-optical properties of water and seafloor collected over diverse habitats
- Ongoing efforts to process imagery and produce habitat maps using a variety of algorithms
- Data and imagery will be available for others to play with

07/20/2012 19:12