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Sketch of an Urban Heat-Island Profile
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How Gities Make
Their Own Weather

HEN HOUSTON IS HIT BY A SUD-

den storm, the city may be part-

ly to blame. Increasingly, urban

centers don’t merely endure bad

weather; they help create it.

Researchers believe the phenomenon may
be more common now than ever before.

Scientists have known for 200 years

that the temperature in a city can be high-

er than that in its environs—something

they learned when an amateur weather

watcher detected a 1.58°F temperature

difference between London and its sub-

urbs. Modern cities, with their cars and

heat-trapping buildings, can create an

in big

cities, heat-
absorbing roofs,
blacktop

pavement and

auto exhaust
trap the sun’s
rays and warm
the air

s

even bigger temperature gap, sometimes
as much as 10°F.

Islands of urban heat can do funny
things with weather. Hot city air, like hot air
anywhere else, rises—even more so because
of the turbulence caused by tall buildings.
When that air is damp enough and collides
with colder layers above it, water can con-
dense out as a sudden burst of rain, especial-
ly if there are few frontal systems to disrupt
the layers, as in summer. In a spot storm
above a city or just downwind of it, it’s likely
that nature alone isn’t behind the downpour.

NAsA and the University of Arkansas
have been using satellite mappxng ‘

Late in the
day, the

accumulated

heat starts to be

coLD AIR

ground-based temperature readings
termine how widespread this pheno;
is. This spring researchers got a si
when they turned their attention to Hous-
ton. Because it’s near a coast and sea breezes
tend to cool and disperse hot air, Houston
was thought to be comparatively safe from
homemade rain. Now it appears that the op-
posite may be true. “The sea breeze may
exacerbate the rainfall” says research mete-
orologist Marshall Shepherd of NasA’s God-
dard Space Flight Center. The warm air and
sea air collide, he explains, and “move
straight up like the front ends of two cars
that hit head on, providing a pump of moist
air that helps thunderstorms develop.”
Hot, waterlogged cities can be cooled
off in the usual ways—by limiting auto ex-

haust, for example. Using !ight~colored :
roofing and paving materials in place of

black, heat-absorbing tar will also help
a bonus, t.he cooler roof

need for

The moist - The
air and

warm city air

collide and drive

each other

hish.

——

clouds. Areas
downwind of

the cooler layer
of air above and
creahng clouds

prevailing
wind blows the

get more
2 rain than those

TRMM Precipitation Radar Study of Urban-Induced Rainfall
Featured in August 11th, 2003 Issue of TIME magazine

HOT ZONE

High concentrations of buildings, roads
and other artificial structures retain
heat, leading to warmer temperatures.
A NASA snapshot of Houston taken one
evening in August 2000 demonstrates
this urban heat-island effect: the hot
zone downtown stands in sharp contrast
to the cooler suburbs to the south
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Surface
Radiation Budget

Q*= (K in+ K ou) + (Lin + L o)
(Q* = Net Radiation
K ;,= Incoming Solar
K .ot = Reflected Solar
L ;,= Incoming Longwave
L .= Emitted Longwave



Surface Energy Budget

Q*=H+LE+G

H = Sensible Heat Flux
LE = Latent Heat Flux
(G = Storage (maybe + or - )
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Relative Sensitivity

ATLAS
Typical Spectral Response Curves
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Emissivity Differences in Natural Surfaces
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CH 10 vs CH 11
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San.Juan F5 Mosaic Albedo
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San Juan Urban Temperature
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San Juan Urbanizing Area Albedo
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San Juan Puerto Rico
Albedo vs Temperature
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San Juan Puerto Rico Urbanizing Area
Albedo vs Temperature
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El' Yunque F4 Mosaic True Color




El Yunque F4 Mosaic Albedo
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El Yunque F4 Mosaic Temperature
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El Verde Albedo
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Urban Heat Island
Mitigation Pilot Project

EPA/NASA Marshall Space Flight Center
Jeffrey C. Luyall
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Urban Heat Island Mitigation
Strategies

a Albedo Modification

® Lighter colored roofs and pavements
® New materials/ coatings
a Plant trees and increase green space
® Shade buildings, rooftops, parking lots and roads
® Cool the air through transpiration
A Rooftop gardens

® Keep roofs cool by shading and/or transpiration

® storm water reduction




Sacramento Skattergrams
Albedo vs Temperature
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Climate Impacts of Land Cover and Land Use
Changes in Tropical Islands under Conditions of
Global Climate Change. Daniel E. Comarazamy, J.
E. Gonzalez, J.C. Luvall, D. L. Rickman, & R. D.
Bornstein. In Press

A Land-Atmospheric Interaction Study in the
Coastal Tropical City of San Juan, Puerto Rico

Daniel E. Comarazamy, J. E. Gonzalez, J. C. Luvall, D.
L. Rickman, and P. J. Mulero

Earth Interactions
Volume 14, Issue 16 (November 2010) pp. 1-24
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What can HysplRI data provide for urban heat island research
and applications ?

»Scale consistent with complex urban surfaces
=\Well calibrated data allows quantifiable radiative & energy
budgets:
*Analysis of albedo
*Analysis of surface temperature
*Analysis of emissivity
=Scale consistent to plan alteration of the urban fabric to
mitigate the urban heat island
»Swath width scale for urban climatology studies - urbanization of
RAMS.
=Global cities.
*Only mutispectral thermal at 60 m
=5 day repeat for thermal for short & long term trend analysis
»Allow for functional classification of urban surfaces
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NASA/MODIS Land Surface Temperature at 1:30 PM
(June 27, 2012)
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NASA/MODIS Land Surface Temperature at 1:30 AM
(June 27, 2012)
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Urban Thermal Remote Sensing
Impervious Surfaces
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ASTER LST (K) (APR 6, 2001)
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Emissivity 1992 /
1, 1. :

Emissivity
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Based on a look-up table in
Snyder et al. 1998 and given
that our analysis is for a
period when the vegetation
is green.




Emissivity 2001

Emissivity
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Based on a look-up table in
Snyder et al. 1998 and given
that our analysis is for a
period when the vegetation
is green.
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Stu ite: Sa

11.35, 9.1, 8.6 um: RGB

2 km

* Mixed urban-natural systems, ~ 150,000 people

* AVIRIS-MASTER pair, June 19, 2008
e 7.5 m AVIRIS, 15 m MASTER
e Spatial degradation, 15 m AVIRIS, 60 m AVIRIS/MASTER

Roberts et al., 2012 RSE



Results _—
"AVIRIS-MASTER Products

d) Broadband Emissivity

e) Land Surface Temperature

334K
Fine spatial scale variability in water

vapor
e Elevation gradients clear
e AVIRIS 1.2 - 1.7 cm, MASTER 0.78 cm

Liquid water and emissivity positively
correlated
e Asphalt also high emissiivty

Albedo and LST poorly correlated
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* Biotic Materials — Most Distinct in VSWIR (all unique)
e NPV low emissivity in TIR (Differs by stature)

e Abiotic Materials — Varies VSWIR-TIR

e AVIRIS: Painted roofs, red tile ;
« Soils and some road surfaces are not distinct* lmpl‘OVGS

e MASTER: Quartz beach sands, various roof types discrimination of

« Asphalt surfaces are near black bodies . : s
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_ VIS-NPV Fractions: 15 and

GV and NPV
fractions scaled well
between all spatial
resolutions

e 75,15 and 60 m

Soil tended to be
overmapped at the
expense of
Impervious at
coarser scales

Two error sources
Asphalt — soil
Red Tile Roof (so variable

Impervious, GV, Soil: RGB o requires 3 emS)




I

0.8

0.6

0.4

NAIP Fractions

y = 0.998x - 0.0947 } *
R>=0.8085

c¢) Impervious

Undert

mappad

10

NAIP Fract
(—}
=

y =1.443x + 0.11
R?*=0.7184

0.4 0.6

0 0.2
HyspIRI Fractions

0.8

Fraction Validation: 60 m
oqb";;_———_—‘bTﬁﬂnJ

1
2 2
0.8 %
2 2
¢ €
0.6 hg
. £

0.4

0.2

y = 1.05x + 0.041

_— Phenology

R2=10.829
0 2
0 0.2 04 0.6 038 1 GV_NPV
d) Soil
1 7 good at HyspIRI
y = 0.690x - 0.068 g
0.8 R? = 0.409 scales
0.6
04 4
So1l Overmapped
0.2 (red tile/Asphalt)
0
0 0.2 04 0.6 038 1
HyspIRI Fractions



" Land-cover Composition
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Green Cover and LST

335 Standard inverse
330 relationship between
325 GV Cover and LST
320 Considerable scatter
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Changes in Surface Heat Fluxes due to Urbanization
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HyspIRI Combined with other RS/GIS data to
generate Urban Morphological Datasets

Urban O
Al morphological A

\ ;.;;;;ﬁ_;lj.-“"'. \ datasets , %

HyspIRI VSWIR data Products

Digital elevation model

Digital photogrammetry



Images showing some of the unique characteristics that
define individual cities (clockwise from upper left: Boise,
ID; Annapolis, MD; St Louis, MO, and Tucson, AZ).



