

Implications of temporal and spectral resolution changes for HyspIRI TIR data of volcanoes

Kizimen volcano (Kamchatka): 01 August 12

Michael Ramsey

Department. of Geology and Planetary Science University of Pittsburgh, Pittsburgh, PA, USA

with assistance from: Dean Riley (SpecTIR) and Nate Wigton (UP)

Temporal Resolution

- well-established for HyspIRI
- what can we glean from the volcano science returned from multispectral TIR data?
 - the ASTER URP Program
 - > proxy for HyspIRI TIR
 - > 8 year archive (N. Pacific)
 - > statistics (e.g. cloud vs. anomaly detection)

Spectral Resolution

- not established for HyspIRI
- trade studies of spectral resolution and band positions
 - SEBASS and MAGI airborne data

- ASTER Urgent Request Protocol (URP) Program
 - integrates Alaska Volcano
 Observatory monitoring into
 the ASTER Urgent Request
 stream
 - initially focused on the northern Pacific region

- > trigger automated ASTER requests via a complex pathway
- > achieve 1 5 day repeat times on average
- archive now contains several thousand high spatial, high temporal TIR scenes
 - o can be mined for statistics on cloud/anomaly vs. temporal resolution
- integrated with MODVOLC since 2010 (global capability)

Kluichevskoi time series

ASTER URP Statistics

- Kizimen Volcano (newer eruption)
 - 1 Jan 2011 to 15 Oct 2012
 - 109 ASTER observations
 - average: 1 scene / 6 days
 - 40 contained clouds (7 had no anomaly)
 - > 7 (thermal), 13 (plume), 22 (both)

ASTER URP Statistics

- Karymsky Volcano (longer eruption)
 - 1 Jul 2007 to 15 Oct 2012
 - 108 ASTER observations (not continuous)
 - average: 1 scene / 18 days (1 / 5 days)
 - 71 contained clouds (45 had no anomaly)
 - > 19 (thermal), 11 (plume), 20 (both)

ASTER URP Statistics

URP Expansion

- MODVOLC-based targets:
 - Cordon Caulle (Chile)
 - Erta Ale (Ethiopia)
 - Etna (Italy)
 - Nyamuragira (DR Congo)
 - Nyiragongo (DR Congo)

- Pu' u O' o / Kilauea (Hawaii, USA)
- Reventador (Ecuador)
- Santa Maria (Guatemala)
- Semeru (Indonesia)
- Stromboli (*Italy*)

criteria

- volcanoes with high activity / danger potential
- globally distributed
- 10 targets initially chosen to test the scheduling demand
 - > will grow based upon capacity of the system

Ramsey and Rose (2009)

- Salton Sea Geothermal Field (SSGF)
 - diversity of thermal/compositional targets

"sandbar" geothermal site Salton Sea, CA *(6 Apr 2010)*

- geology validation target for new airborne MAGI instrument
 - funded by the NASA IIP
 - built by Aerospace Corp.
 - 32 TIR channels
- SEBASS TIR data (6 Apr 2010)
- MAGI TIR data (9 Nov 2011)
- this study
 - TIR band positions of HyspIRI
 - compositional results

- Proposed HyspIRI TIR Bands (μm)
 - 3.98, 7.35, 8.28, 8.63, 9.07, 10.53, 11.33, 12.05
- Suggested Variant (μm)

[Ramsey & Rose, 2009]

- 3.98, 7.35, 8.28, 8.55, 9.07, 10.05, 11.35, 12.05
 - better discrimination of:
 - > SO₂, feldspars (10.05), carbonates (11.35)
 - effects of 10μm placement [Ramsey, 2012]

- 10 μm channel
 - currently planned
 - longward of the ozone absorption region
 - marginal spectral diversity for most silicate minerals
 - e.g. feldspars and quartz

- > especially where mixed which is common
- we proposed a shift to shift to a short wavelength position
 - also proposed changes to 8.55μm (SO₂) and 11.35μm (carbonates)

- 10 μm channel
 - currently planned
 - longward of the ozone absorption region
 - marginal spectral diversity for most silicate minerals
 - > e.g. feldspars and quartz

- > especially where mixed which is common
- we proposed a shift to shift to a short wavelength position
 - also proposed changes to 8.55μm (SO₂) and 11.35μm (carbonates)

10 Wavelength 11

9

Kelso Dunes, CA (red indicating improved feldspar detection in [B]). Ramsey and Rose [2009]

Salton Sea Geothermal Field (SSGF)

SEBASS data
MAGI data

MAGI On The Twin Otter

Inertial Navigation System EMERGENCY EXIT :

Sensor

Commercial Stabilization Platform

Calibration Blackbody

MAGI Analysis

Analysis

- limited amount of data processed from L1
 - each whisk: 1024 x 128
- minor detector line noise
- temperature/emissivity data appear very good
 - compositional diversity matches well with SEBASS mineral maps
 - > example: gypsum, quartz

"sandbar" brightness temp. $T_{max} = 93 \text{ }^{\circ}\text{C}$

TIR Observations of Volcanic Targets

- temporal
 - 8 year/several 1000 scene ASTER URP volcano archive
 - nearly identical to HyspIRI TIR spatial/spectral/temporal data
 - clouds (74 82% of URP scenes)
 - anomalies (52 86% of URP scenes)
 - > high repeat time is critical

spectral

- have the new instruments/tools to simulate HyspIRI TIR bands
- slight tweaking of band positions should be being studied
- e.g., 7.35, 8.20, 8.55, 9.07, 10.2 (n), 11.4(n), 12.05 μm
 - > greatly improves detection of feldspar silicate minerals
 - > possibly carbonates and SO₂ as well
 - o may be trades between gas and ground detection, however

