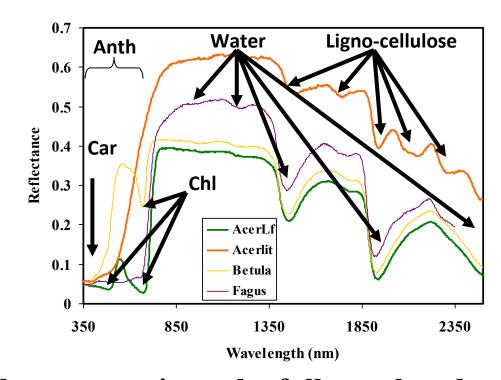
The relationship between species composition, fractional cover and Land Surface Temperature in a Mediterranean ecosystem

Dar A. Roberts¹, Keely Roth¹, Phil Dennison², Glynn Hulley³

- 1. Dept. of Geography, UCSB
- 2. Dept. of Geography, Univ. Utah
 - 3. Jet Propulsion Laboratory

Funding:

NASA HyspIRI Preparatory Program


Naval Post Graduate School

Outline

- Introduction
- Research Objectives
- Study Site
- Methods
 - Preprocessing
 - MESMA
- Results
- Conclusions

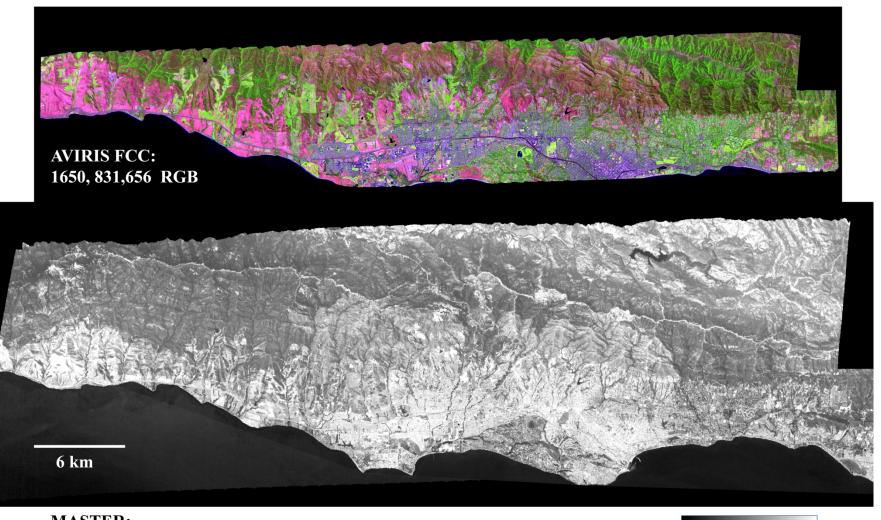
Introduction

- Numerous Synergies exist between the VSWIR and TIR
- VSWIR
 - Species composition
 - Fractional cover
 - Canopy structure (LAI)
 - Canopy chemistry
 - Photosynthetic function
- TIR
 - Temperature
 - Stress measure
 - Evapotranspiration
 - Emissivity
 - Species composition
 - Canopy chemistry

 HyspIRI will enable those synergies to be fully explored and utilized

Research Objectives

- Explore synergies between the VSWIR and TIR using AVIRIS-MASTER pairs
- Research Questions
 - What is the relationship between species composition and land surface temperature (LST)?
 - What is the relationship between fractional cover and LST?


Study Site (1) Run 19: July 19, 2011 N 329K 3 km 295K

AVIRIS: 1650, 831,656 nm RGB

MASTER: Temperature

Study Site (2)

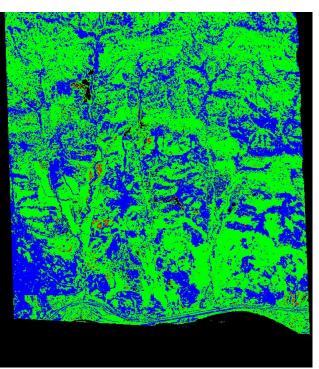
SB Runs 21 to 22

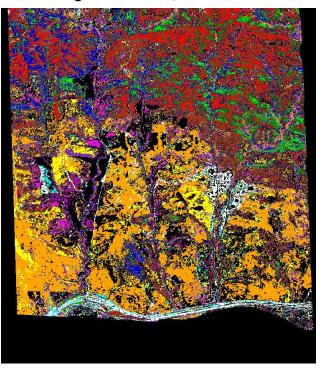
MASTER: Temperature

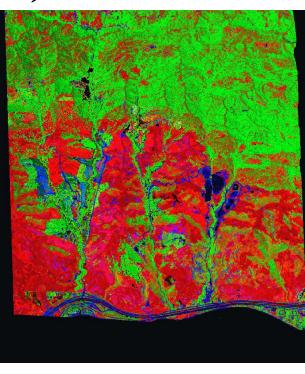
295K

329K

Methods: Pre-Processing


- AVIRIS: ATCOR Surface Reflectance
 - Scene parameters (sensor height, location, time)
 - ATCOR parameters
 - rural, 940&1130 nm water vapor
 - Scan angle from GLT
 - Visibility 80km (default), minor adjacency correction
- MASTER
 - JPL MASTER TES online tool
 - Varied CO₂, Ozone, Water vapor
 - Tuned using emissivity from Lake Lagunita
 - Ozone: 0.5, CO₂: 370 ppm: Water vapor: 0.8 g (cm)
 - Temperature (K), Emissivity (5 bands)
- Both: Georectified (7.5m AVIRIS or 15 m. MASTER) to a spatially degraded DOQQ (2010)
 - Resampled nearest neighbor using Delaney Triangulation


Training/Validation Spectra

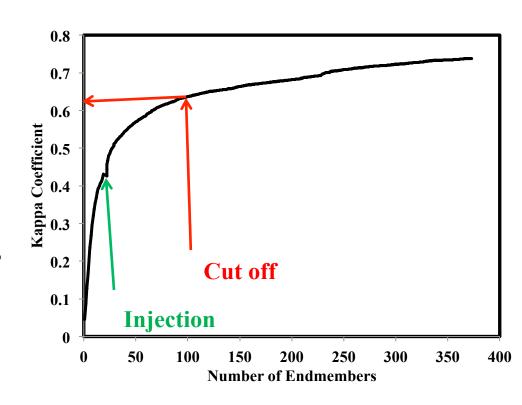

		r19		r20			r21			r22					Training		
Туре	Code	Npolys	10/50	N	polys	10/50		Npolys	10/50		Npolys	10/	50	Npolys	10/50		
Adenostoma fasciculatum	adfa		2 2	20	0	à			1	10	2	25	250	28	3 280		
Artemisia Cal/Salvia leucophylla	arcasale	1.	3 13	30	0									13	3 130		
Arctostaphylos glauca/gland	argl		1 1	10	0							6	60	7	7 70		
Bacharis pilularis	bapi		1 1	10	8		77	1	1	107				20	194		
Brassica nigra	brni	'	0	0	5		50		9	90		1	10	15	5 150		
Ceanothus cuneatus	cecu	;	5 5	50	0							1	10	(60		
Ceanothus megacarpus	ceme		0	0	0		0		0	0	1	13	130	13	3 130		
Ceanothus spinosus	cesp	'	6 (50	0			3	1	10		3	30	10	100		
Citrus species	cisp		2 2	20	0			1	1	106		2	20	15	146		
Eriogonum fasciculatum	erfa	;	8 8	30	0									8	80		
Eucalyptus species	eusp			1	7		70		9	90				16	160		
Irrigated grass	irgr			1	1		10	1	6	160				17	7 170		
Mediterranean Annual Grass/Forb	magf		1 1	10	3		30	1	5	50		6	60	15	5 150		
Marsh	Marsh	1		-	8		80	1	0	100				18	180		
Persea americana	peam			1				1	8	180				18			
Pinus sabiniana	pisa	l '	7	70	0									7	7 70		
Platanus racemosa	plra		1 1	10	0							3	30	4	40		
Quercus agrifolia	quag		1 1	10	0				6	60	1	13	130	20	200		
Quercus douglasii	qudo	1	7 17	70	0									17	7 170		
Rock	rock		2 2	20	0				3	30		1	10	(60		
Soil	soil	l .	4 3	32	1		6		1	10		3	30	9	78		
Umbellularia californica	umca		1 1	10	0							3	30	4	40		
Urban	urban				6		60	1	5	150				21	210		
	Totals	7:	2 71	12	39	3	383	11	6	1153		30	800	307	3048		
												Mir	imum	4	40		
												Ma	xmum	28	3 280		
												Me	an	13.3	3 132.5		
												Std	ev	6.3	63		

- Sampled 23 land-cover/species from 307 polygons
- Random training/validation (10 max, or 50%)
- Three pulls, first pull acceptable (Roth et al., 2012)

Multiple Endmember Spectral Mixture Analysis (MESMA)

Complexity: 3,2,1 RGB

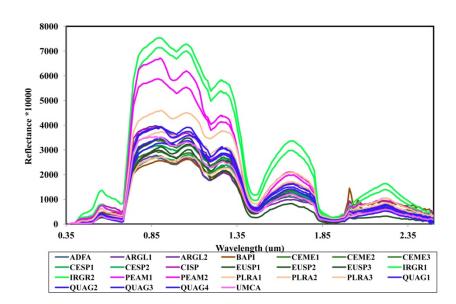
Class

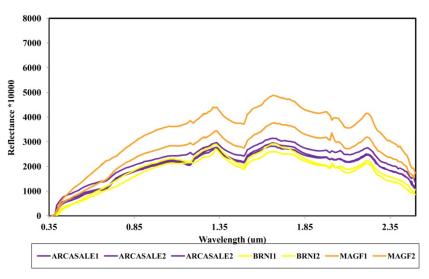

- Number and types of em varies per pixel
- Optimum model and complexity level based on RMS
 - 2 em =classified map
- Complexity level selected using RMS change threshold
 - 0.007

Composition: NPV-GV-Soil

RGB

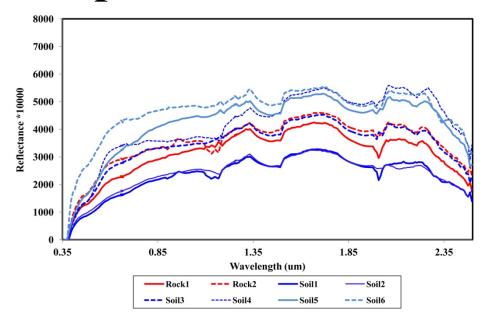
Endmember Selection: Forced Iterative Endmember Selection

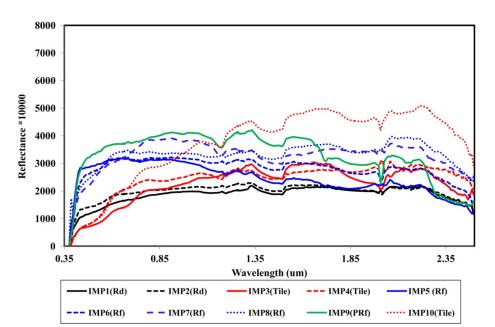

- Traditional: EAR/ MASA/COB
- Automated: Iterative Endmember Selection (IES) (Schaaf/Roth)
- Forced IES
 - Injects EMC optimal ems into IES for weak or missing classes
 - Continues until Kappa does not improve
 - Final library can be cut off at any number
 - 101



See Roth et al., 2012

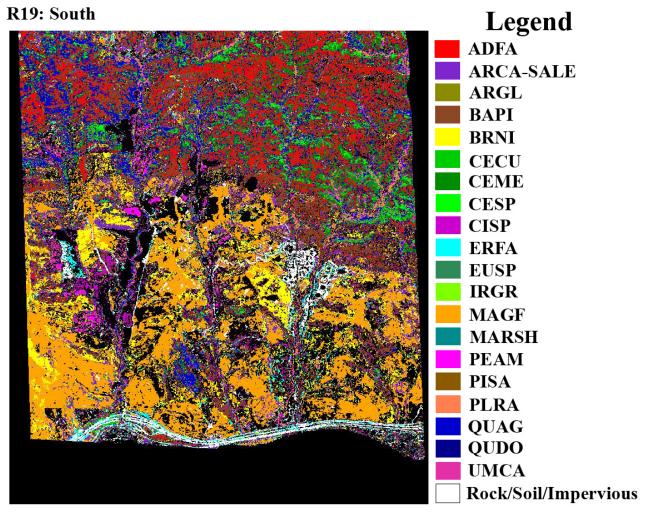
Endmember Spectra


- 2em classification
 - 101 endmembers
 - 67 GV
 - 11 GV-NPV (can be either)
 - 3 Rock
 - 7 Soil
 - 13 urban
- **GV**
 - No mixtures, reduced redundancy
 - 25 endmembers
 - 1 to 3 per species
- NPV
 - 7 endmembers
 - 3 Arcasale, 2 brni, 2 magf



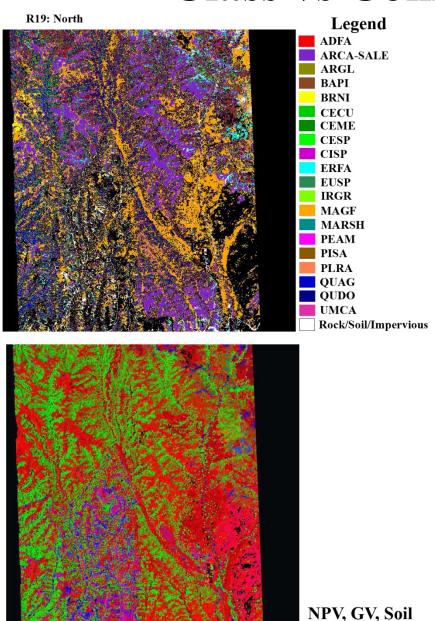
Endmember Spectra

- Soil/Rock
 - 8 endmembers
 - 2 rocks
 - 6 soils
- Impervious/urban
 - 10 endmembers
 - 2 roads
 - 3 tile roofs
 - 4 composite roofs
 - 1 painted roof


Results: Classification

	ADFA	ARCA-SALE	ARGL	BAPI	BRNI	CECU	CEME	CESP	CISP	ERFA	EUSP	IRGR	MAGF	MARSH	PEAM	PISA	PLRA	QUAG	QUDO	ROCK	SOIL	UMCA	urban	Users
ADFA	3239	5	781	23	3	76	386	93	0	10	308	0	1	76	2	417	19	165	643	0	0	6	11	51.71
ARCA-SALE	122	3606	0	21	202	57	2	4	0	267	2	0	42	10	0	18	0	11	128	4	20	0	6	79.74
ARGL	54	0	628	0	0	16	129	44	0	0	185	5	0	0	28	1	18	33	1	0	0	10	4	54.33
BAPI	287	151	30	661	161	32	88	107	49	129	521	6	27	751	49	405	28	245	1334	0	5	6	32	12.95
BRNI	64	81	2	69	2973	7	1	1	5	107	108	67	114	83	46	111	0	14	367	0	34	0	6	69.79
CECU	54	130	2	5	0	187	6	0	0	0	18	0	0	327	0	12	0	0	38	0	2	0	4	23.82
CEME	451	0	256	7	0	42	1549	434	1	0	145	0	0	2	12	223	146	302	120	0	0	9	4	41.83
CESP	33	0	5	0	0	0	14	734	0	0	27	0	0	0	1	76	34	215	39	0	0	13	1	61.58
CISP	73	1	27	42	299	4	41	34	1053	136	159	29	2	2190	234	94	32	29	69	0	0	0	202	22.17
ERFA	104	113	6	5	24	3	8	10	8	2416	25	0	21	476	24	14	13	3	25	5	15	0	193	68.81
EUSP	15	0	20	3	1	0	76	84	0	0	3430	6	0	40	2	8	3	44	1	0	0	3	11	91.54
IRGR	0	0	0	1	350	0	1	5	46	0	20	1239	0	2	542	0	92	11	0	0	0	2	12	53.34
MAGF	12	134	2	22	958	5	0	0	2	48	47	88	2045	2	15	15	0	2	121	5	180	0	5	55.15
MARSH	78	4	11	11	2	29	33	16	36	0	121	0	1	4086	7	68	15	13	57	0	0	0	147	86.29
PEAM	22	0	38	1	48	5	40	74	1	2	332	41	0	0	5078	52	99	95	88	0	0	26	11	83.89
PISA	16	0	1	2	0	61	0	0	0	0	60	0	0	0	0	37	0	0	28	0	0	0	4	17.7
PLRA	17	0	15	1	4	0	22	36	64	0	24	11	0	0	508	5	775	110	2	0	0	19	3	47.96
QUAG	141	0	75	1	0	0	105	682	0	0	787	10	0	8	73	145	317	2641	259	0	0	319	1	47.47
QUDO	148	5	19	62	2	1	49	110	2	0	414	3	0	284	10	418	16	179	1930	0	2	8	10	52.56
ROCK	12	7	0	0	23	0	0	0	1	25	0	0	29	8	0	0	0	2	0	24	83	0	26	10
SOIL	11	39	0	0	2	0	0	13	2	37	1	0	15	78	12	0	2	0	1	22	979	0	451	58.8
UMCA	0	0	2	0	0	0	0	6	0	0	0	0	0	0	1	0	2	108	0	0	0	59	0	33.15
urban	25	5	5	0	2	2	19	22	9	2	27	1	24	437	16	7	15	1	11	1	205	0	4279	83.66
Unmodeled	8	1	0	25	817	0	0	4	141	3	134	1138	7	65	455	8	11	5	17	12	24	0	1037	0
Producers	64.96	84.21	32.62	68.71	50.64	35.48	60.3	29.21	74.15	75.93	49.75	46.86	87.84	45.78	71.37	1.73	47.34	62.46	36.56	32.88	63.2	12.29	66.24	

Overall Accuracy 0.5597 kappa 0.53515

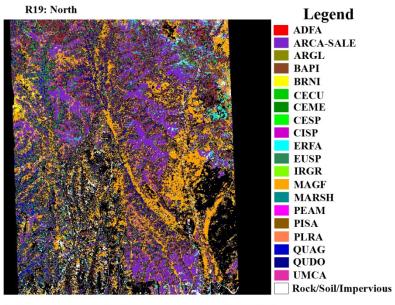

- Model 101: Kappa 0.555, Overall 56%
- Excellent (> 85%: Green): ARCA-SALE, CISP, ERFA, MAGF, PEAM
- Very good(> 60%: Orange): ADFA, BAPI, CEME, QUAG, SOIL, Urban
- Poor (< 30%: Red): CESP, PISA, UMCA

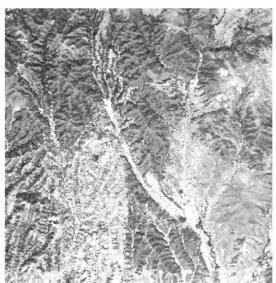
Results: Classification

- The map is better than the validation suggests
- All but a few classes (PISA, UMCA) are generally correct, BAPI is overmapped
- Polygon Accuracy based on most abundant: 84.7%

Class vs Composition: North

RGB


Class

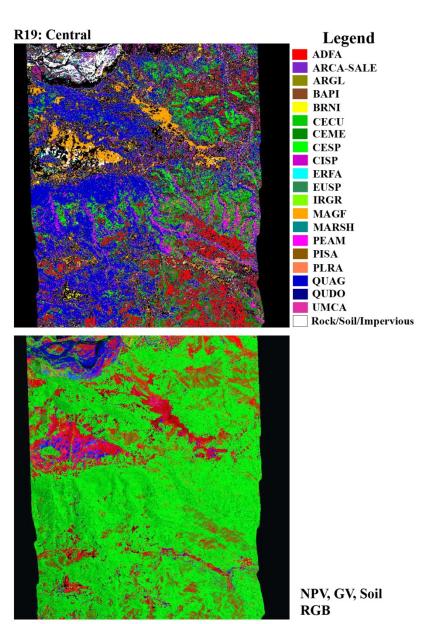

- ARCASALE
- MAGF
- ERFA
- Lesser ADFA, QUDO/QUAG
- Unclassified (bright MAGF, SOILS)

Composition

- High GV: QUDO/QUAG (in valleys)
- Mixed GV/NPV: ARCASALE/ERFA
- High NPV: MAGF/BRNI?

Class vs Temperature: North

Class

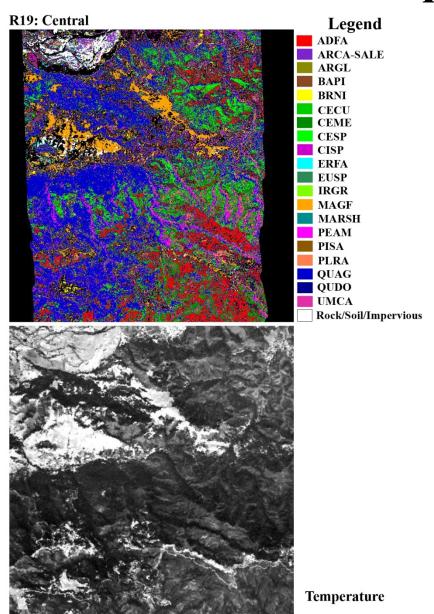

- ARCASALE
- MAGF
- ERFA
- Lesser ADFA, QUDO/QUAG
- Unclassified (bright MAGF, SOILS)

• Temperature

- Cool: QUDO/QUAG (in valleys)
- Warm ARCASALE/ERFA
- Hot: MAGF, Soils

Temperature

Class vs Composition: Central


• Class

- ADFA
- QUDO
- QUAG
- CEME, CECU, CESP
- Rock/Soil
- MAGF

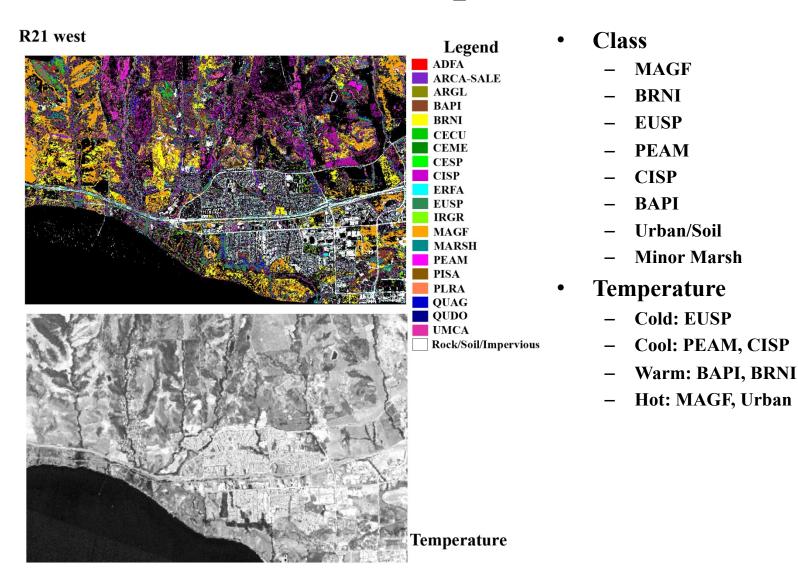
Composition

- High GV: All but MAGF and River channel
- Mixed GV/NPV: ADFA, BAPI (higher NPVprobably something else)
- High NPV: MAGF
- High Rock/Soil; River channel

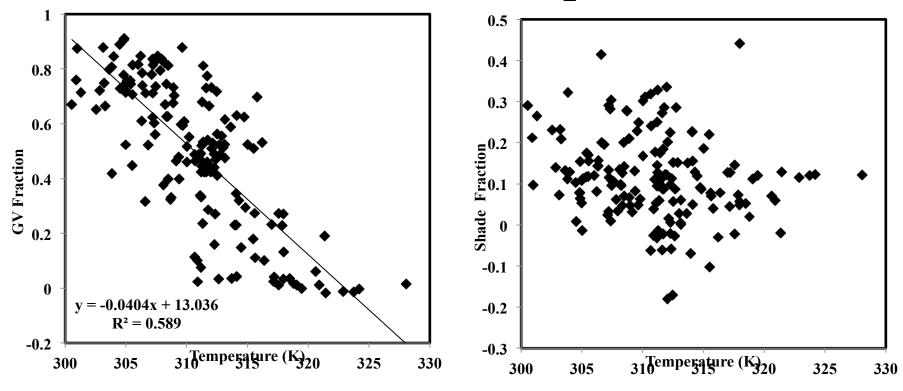
Class vs Temperature: Central

Class

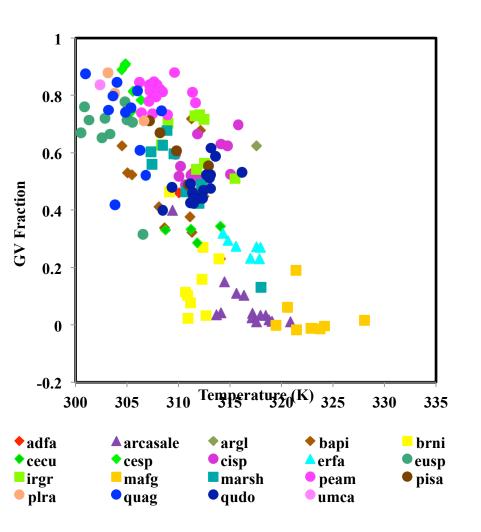
- ADFA
- QUAG, some QUDO
- CEME, CECU, CESP
- Rock/Soil
- MAGF


Composition

- Cold: North facing slope, dominated by trees (QUAG)
- Cool: South facing slopes, flat terrain dominated by shrubs (ADFA, Ceanothus
- Hot: Bare rock on ridges, river channels, MAGF


Class vs Composition: South

Class vs Temperature: South



Temperature Compositional Relationships

- GV fraction strongly inversely correlated with temperature for vegetated targets
- Shade fraction poorly correlated (high shade, cooler, $r^2=0.04$)
 - Shade is not just shadows, but also varies with albedo and local zenith

Temperature Species Relationships

- Species composition strongly impacts temperature, significant clustering
- Trees (circles)
 - Coolest, high to moderate GV
- Evergreen shrubs (diamonds)
 - Warmer, high to moderate GV
- Deciduous shrubs (triangles)
 - Warm, moderate to low GV
- Forbs/grasses (squares)
 - High to low GV, warm to hot

Conclusions

- MESMA was capable of mapping 23 species/landcover classes at reasonable accuracies
 - Other classifiers can do better (i.e., LDA/CDA)
- Plant species map out correctly in geographic space
- GV and temperature are inversely correlated
- Plant species cluster uniquely in compositional temperature space, likely resulting from functional differences
 - (e.g., deeply rooted, evapotranspiring cool trees vs shallow rooted partially senesced shrubs)
- More is coming
 - LDA species maps
 - EWT emissivity
 - Water vapor TES
 - Full range spectroscopy
 - And HyspIRI!