Plant Photosynthetic Mechanism:

The Theoretical and Empirical Basis for Imaging Spectroscopy

This is photosynthesis:

This is photosynthesis:

Light reactions:

Chloroplast gains a proton and loses an electron and other stuff happens

Electron transport chain is set in motion. NADP is reduced to NADPH. ATP is synthesized. $2 H_2O + 2 NADP+ + 3 ADP + 3 P_i + light \rightarrow 2 NADPH + 2 H^+ + 3 ATP + O2$

Light-Independent Reactions: The Calvin Cycle

 $3 CO_2 + 9 ATP + 6 NADPH + 6 H^+ \rightarrow C_3 H_6 O_3$ -phosphate + 9 ADP + 8 P_i + 6 NADP+ + 3 H₂O

How photosynthesis is modeled:

(temperature dependent)

CO₂ Uptake

How photosynthesis is modeled:

(temperature dependent)

CO₂ Uptake

How photosynthesis is modeled:

(temperature dependent)

What ecosystem models need?

Why imaging spectroscopy?

Chlorophyll and other pigments perform light harvesting activities.

We can measure pigment concentration.

Imaging Spectroscopy

Carotenoids, photosynthetic down-regulation and PRI

Nitrogen: in part, think "Rubisco"

Lookup Table

Cover Type	Value
Maple	2.75
Aspen	2.50
Oak	2.10
Pine	1.50
Spruce	1.00

Traits governing ecosystem processes

Imaging Spectroscopy

Other

Leaf mass per unit area (LMA):

Describes leaf thickness and is used in models to characterize the metabolic tradeoff between longevity vs. production.

Lignin (also, cellulose):

Between cells and in cell walls. Critical to regulating transport of liquid. Highly recalcitrant and concentration is related to decomposition rates.

Tannins:

Foliar protective compounds.

Light Use Efficiency (gC MJ⁻¹)

Leaf Economics

82%

allocation of resources

Leaf Mass per Area

Photosynthetic Assimilation Rate % Nitrogen (by mass)

Leaf Longevity

% Phosphorus (by mass)
Dark Respiration

'Expensive compounds' (e.g., lignin, lipids) Stress tolerant 'Cheap minerals' (e.g., nutrients) Fast(er) growing

Plants invest in the construction of leaves, which return a 'revenue stream' of photosynthate over their lifetimes (Wright et al 2004).

Species composition

CO₂ Assimilation: Vcmax and Jmax

Why concurrent thermal infrared imagery?

Because photosynthesis is a temperaturemediated chemical reaction.

Thermal context to retrievals:

Imaging spectroscopy provides to ecosystem models:

Measurement

HyspIRI

Current Approach

Chlorophyll Concentration Direct estimate Less precision Measures photosynthetic capacity (light reactions)

Nitrogen Concentration Direct estimate Lookup table Measures photosynthetic capacity (light-independent reactions)

LMA Direct estimate Lookup table Leaf allocation of resources

Lignin/cellulose Direct estimate Lookup table

Decomposition

PRI Direct calculation N/A Measure of photosynthetic down-regulation and plant stress

Species Composition SMA, CART, LDA Inferred Plant functional type distribution

HyspIRI may also provide:

Measurement

HyspIRI

Current Approach

Light-use Efficiency

%N*LMA

Modeled

Measure of carbon dioxide uptake

Vcmax

Direct estimate

Modeled

Direct measure of CO₂ uptake at a given temperature

Jmax

Direct estimate N

Modeled

Direct measure or RuBP regeneration at a given tempertature

Skin temperature

Direct retrieval

N/A

Temperature drives photosynthetic rates

B 15 CONDENSED TRANSCEPT OF THE PROPERTY OF TH

Tannin concentration

Leaf defensive chemistry

Direct estimate

N/A

Co-authors: Shawn Serbin, Aditya Singh, Clayton Kingdon

Questions?

Plant Biology and Radiation

By: Nancy Kiang (NASA GISS) and Govindjee (UIUC)