

2012 HyspIRI Symposium

May 16-17, NASA/GSFC Greenbelt (MD)

Identifying Priority Products to Support HyspIRI's Science Questions

Carmelo CAMMALLERI¹

M.C. Anderson¹

F. Gao¹

M.A. Schull¹

R. Houborg²

W.P. Kustas¹

- 1 USDA-ARS, Hydrology & Remote Sensing Lab, Beltsville, MD
- 2 European Commission, JRC, Ispra, Italy

Daily ET products at Landsat/HyspIRI scale from MODIS & Landsat Data

May 16, 2012

- Water demand has doubled in the last 50 years.
- A large fraction of water resource (about 60%) is used for agricultural irrigation but with efficiencies often less than 50% (ga.water.usgs.gov/edu/wuir.html).
- Climate forecasts of precipitation suggest a future reduction in water availability.
- Quantification of crop water loss (mainly through evapotranspiration)
 assumes a key role in agricultural water management.

Cost effective estimates of actual evapotranspiration (ET) on large areas (~ 10²-10⁴ km²) can be obtained only through the use of thermal infrared (TIR) satellite data.

Practical applications require ET estimates at:

Daily and Season time-scales

Field or finer spatial-scales

Currently, TIR satellite sensors are characterized by low spatial resolution (1-10 km) and high frequency (day to 15 min) or high spatial resolution (30-m) but low repeatability (2 weeks). **Multi-sensor technique have to be developed** to fuse the best qualities of the datasets.

Landsat-5 120 m 16 days

MODIS/Terra
1 km
1 days

<u>Landsat-7</u> 60 m 16 days

MODIS/Aqua 1 km 1 days

HyspIRI 60 m 5 days

Sentinel-3
1 km
1 days

Cloud cover often reduces actual TIR data frequency from the nominal value, especially during winter period [Ju & Roy, RSE112: 2008].

During SMEX02:

- Summer period (June-August 2002)
- Both Landsat 5 and 7.

- Only 5 scenes were clear.
- Average frequency of 21 days.
- Maximum gap of 32 days.

- A change at MODIS scale have equal effects on all the Landsat pixels.
- Landsat and MODIS estimates are consistent at MODIS resolution.

- Soil Moisture EXperiment (SMEX02), June-August 2002.
- Walnut Creek watershed (5,100-ha), central lowa.
- ET monitoring by means of 8 micrometeorological flux towers (red dots in figure) on corn and soybean fields during a period of rapid crop development.

- Absence of biases among the three maps at ALEXI resolution.
- Some dispersion is present in both data due to the smoothing procedure.
- Slopes practically equal to 1, R² of 0.82 (Landsat) and 0.80 (MODIS).
- Agreement in the order of 0.3 mm d⁻¹.

- Good performance of Landsat-Only model.
- Increasing trend until DOY 185 and a successive stable stage around 0.8.
- Rainfall events seem to do not cause significant changes in water stress.

- Significant leap in the ratio ET/PET after the first rainfall event (DOY 185).
- Landsat-Only seems to underestimate the observations in DOY 185-210.
- Fused Landsat-MODIS partially overcomes the underestimates.

	Crop Type	Obs.	Landsat-only				Landsat-MODIS			
Site		Cum. (mm)	MAD (mm d ⁻¹)	RE (%)	Slope	ΔCum. (mm)	MAD (mm d ⁻¹)	RE (%)	Slope	ΔCum. (mm)
003	Soybean	237	1.02	19.4	0.81	-41.0	0.78	14.9	0.87	-28.5
006	Corn	292	0.82	14.6	0.90	-17.4	0.79	14.1	0.95	-1.9
024	Corn	270	0.45	8.2	1.02	6.8	0.55	9.9	1.06	17.6
025	Corn	210	0.67	14.4	0.93	-10.9	0.61	13.1	1.01	5.0
033	Corn	230	0.66	12.1	0.89	-21.8	0.54	9.9	0.96	-4.6
151	Corn	212	0.81	15.0	0.89	-21.0	0.65	11.9	0.94	-8.2
161	Soybean	210	0.92	17.8	0.88	-21.0	0.78	15.2	0.98	0.5
162	Soybean	258	0.65	12.3	0.92	-15.8	0.52	9.9	0.99	-2.6
Average		240	0.75	14.2	0.90	-17.8	0.65	12.3	0.98	-2.8

- Both MAD and RE (errors) are in average reduced of about 10%.
- The systematic bias (underestimation) of Landsat-only model (slope = 0.90) is significantly reduced (slope = 0.97) by introducing MODIS data.
- The total difference on seasonal cumulative ET is reduced of ≈ 50%.
- Almost all the sites show improvements by introducing MODIS data.

- Good performance of Landsat-Only model.
- Increasing trend until DOY 185 and a successive stable stage around 0.8.
- Rainfall events seem to do not cause significant changes in water stress.

- Significant leap in the ratio ET/PET after the first rainfall event (DOY 185).
- Landsat-Only seems to underestimate the observations in DOY 185-210.
- Fused Landsat-MODIS partially overcomes the underestimates.

		Obs.	Landsat-only				STARM			
Site	Crop Type	Cum. (mm)	MAD (mm d ⁻¹)	RE (%)	Slope	Δ Cum. (mm)	MAD (mm d ⁻¹)	RE (%)	Slope	Δ Cum. (mm)
003	Soybean	237	1.02	19.4	0.81	-41.0	0.64	12.3	0.92	-17.9
006	Corn	292	0.82	14.6	0.90	-17.4	0.78	14.0	0.90	-24.3
024	Corn	270	0.45	8.2	1.02	6.8	0.49	8.9	1.03	9.7
025	Corn	210	0.67	14.4	0.93	-10.9	0.54	11.5	0.97	-5.6
033	Corn	230	0.66	12.1	0.89	-21.8	0.52	9.6	0.94	-12.1
151	Corn	212	0.81	15.0	0.89	-21.0	0.65	12.0	0.97	-5.2
161	Soybean	210	0.92	17.8	0.88	-21.0	0.50	9.7	1.02	5.9
162	Soybean	258	0.65	12.3	0.92	-15.8	0.53	10.1	0.97	-4.3
Average		240	0.75	14.2	0.90	-17.8	0.58	11.1	0.98	-6.7

- Both MAD and RE (errors) are in average reduced of about 20%.
- The systematic bias (underestimation) of Landsat-only model (slope = 0.90) is significantly reduced (slope = 0.98) by introducing MODIS data.
- The total difference on seasonal cumulative ET is reduced of ≈ 60%.
- Almost all the sites show improvements by introducing MODIS data.

- A multi-scale (from continental to field) and multi-sensor (geostationary and polar-orbit satellites) modeling framework was tested to derive ET maps at high resolution (≈ 10-100 m) and daily frequency.
- The proposed **methodology** is developed to be consistent at different scales and it is **suitable** (and transferable) for next generation sensors (as **HyspIRI**).
- A general improvement in the agreement with in-situ measurements was observed by fusing MODIS (daily, 1-km) data with Landsat (16 days, 30-m) maps if compared to Landsat-only case.
- The gain related to MODIS data is higher when leaps in water availability were observed between two successive Landsat acquisitions.
- The obtained average errors (10% on daily evapotranspiration and 5% on seasonal cumulative ET) are appropriate to provide a support tool in practical management of agricultural water resource.

Carmelo CAMMALLERI, PhD

U.S. Department of Agriculture (USDA)
Agricultural Research Service (ARS)
Animal and Natural Resources Institute (ANRI)
Hydrology and Remote Sensing Laboratory (HRSL)