

Airborne TIR Hyperspectral Imaging with High Spatial Resolution and Wide Area Coverage

David M. Tratt and Jeffrey L. Hall Space Science Applications Laboratory Physical Sciences Laboratories The Aerospace Corporation

HyspIRI Science Workshop Washington, DC August 23-25, 2011

Mako: a New Thermal IR Imager

Sensor Details (cont.)

- Uses a commercial 3-axis stabilization mount
 - Intergraph Z/I mount
 - High frequency jitter removed by physical vibration dampeners
 - Low frequency jitter removed by active control
 - Stabilizes up to ±5° range in pitch and roll
 - Up to ±12° yaw offset can be accommodated in Mako installation
- Sensor attitude measured with Litton LN-100G INS and KVH DSP-3000 fiberoptic gyros (x3)
 - Estimated pixel geolocation uncertainty is <10 meters from 12,000 ft AGL
 - With separate differential GPS
- Gimbal mirror pitch control provides additional capability
 - Bi-directional whisking
 - High-sensitivity (low area coverage) scans ("stare" mode)

Spectrometer Details

- *Mako* uses a DRS Si:As Blocked Impurity Band 128x128 FPA
 - $-75 \ \mu m \ pixels$
 - Cooled to 10K using LHe
 - 99.93% operable
 - 4 kHz max. frame rate (Mako currently at 800 Hz); 16 output taps
- Spectrometer based on Dyson lens and concave grating
 - Low distortions ("smile" and "keystone") at fast f-numbers
 - Mako is an f/1.25 system
- Cooled optics (LHe blow-off) for improved sensitivity and increased dynamic range
 - 48-hour dewar hold time

Mako Science Flights

SSGF – SE shore of Salton Sea, Background Image

SSGF – Mako Thermal Radiance Overlay (1-m GSD)

SSGF – Thermal Radiance and Ammonia Retrievals

Agricultural Ammonia in the San Joaquin Valley

- Mako was flown over California's Central Valley on 17 Sept. 2010
- Flights were conducted in Tulare and Kings Counties primarily between the towns of Visalia and Delano
- Altitude was 3.8 km AGL \rightarrow 2-m GSD
- Collections coordinated with overflights of the European IASI (Infrared Atmospheric Sounding Interferometer) sensor aboard Europe's MetOp-A
- Integrated ammonia column densities in the dairy farm regions near Visalia varied between 25 and 45 ppm-meters
- The airborne data clearly showed prominent plumes of ammonia emanating from some of the dairy facilities

This work being done in collaboration with the IASI team based at *l'Université Libre de Bruxelles* in Belgium

IASI annual average for 2010

Footprint average nh3_(dbt) 2010

0.8 0.7 0.6 0.5 0.4 0.3 0.2 (L. Clarisse, M. Van Damme -117 -120.5-120 -119 5 -118.5 -118 -117.5

Google Earth Image for Flight CV01

CV01 – Brightness Temperature Map

CV01 – Computed Column Density Map

Regional comparison between IASI and Mako NH₃

IASI: Polka dots *Mako*: Parallelograms (L. Clarisse, M. Van Damme)

09/16/2010 19:55:42

Thermal image

Plume tracking from 12 kft (3.8 km) AGL (GSD 2 m)

006_100916_195542_RapRepeat12k_Whisk1 [ACE, 1,1-Difluoroethane]

ACE filter

200 m

Continuous tracking of controlled tracer release

Summary & Future Plans

- A new high-performance thermal infrared spectral imaging sensor has successfully completed its inaugural flights
- Flights over California's Imperial and San Joaquin Valleys have demonstrated the utility of large area coverage
- Modifications ongoing to improve the frame rate and sensitivity
 Current NEΔT is ~0.1 K at 10 µm
- *Mako* is available to participate in field studies

Acknowledgements

- Assistance of the following personnel of The Aerospace Corporation is gratefully acknowledged:
 - Richard Boucher
 - Kerry Buckland
 - David Gutierrez
 - Steven Hansel
 - Patrick Johnson
 - Brian Kasper
 - Eric Keim
 - Nery Moreno
 - Mark Polak
 - Mazaher Sivjee
 - David Warren
 - Stephen Young

All trademarks, service marks, and trade names are the properties of their respective owners.

