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Introduction

* Increasing levels of atmospheric greenhouse gases
(GHGs) and associated climate change are of serious
global concern:

—For every degree in global temperature increase,
grain production yields are expected to decrease
10%;

—Global human population continues to increase by
roughly 80 million per year.

* These increasing temperatures and GHGs, coupled
with increasing food demand, present significant
environmental, economic, and political challenges in
the years to come.




Soils and GHGs

* Of these GHGs, carbon (C) is 4
of the most concern as it is
released:

—Through the combustion
of fossil fuels;

— From agricultural soils by
conventional agricultural
management practices.

* Soils represent largest global

C stock.
Figure 2. Prairie soils (USDA Mollisol Order)
—Hold the greatest account for (a) 27% of the conterminous US land
. surface and (b) 31-39% of SOC stocks. The
pOtenUaI to SequeSter majority of US cropping acreage can be found on
atmOSpheriC C. prairie soils, with these fertile soils hosting “bread
baskets” in the central US, the South American
Pampas, and the Russian steppe.
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* In North America, 30 — 50% of soil organic carbon
(SOC) was lost in prairie soils since conversion to
agriculture 150 years ago.
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Steam plow breaking native prairie in early 1900s in ND.
Institute for Regional Studies, NDSU.



Tillage Method and Agricultural
Carbon Fluxes

* Conventional intensive
tillage methods:

—Remove crop
residues (plant litter/
non-photosynthetic
vegetation) from the
surface;

— Expose soil to
erosion;

— Destroy the natural
soil structure;

— Expose soil to SOC-
destroying oxygen.




Tillage Method and Agricultural
Carbon Fluxes

* Modern reduced- and
conservation-tillage _.
methods: .

— Preserve increased :
amounts of crop residues ;.,
on the soil surface; "

— Decrease soil erosion;

— Disturb the soil less;

— Preserve the natural soil
structure;

— Help increase SOC;

— Require fewer passes
with farm machinery,
using less fossil fuels.




Remote Sensing Tillage Method

* Tillage method is best sensed by
determining areal crop residue
cover fraction.

* Broad Landsat TM/ LDCM OLI/
Sentinel-2 bands cannot
discriminate narrow spectral
features of dry vegetation
components.

* Landsat TM band 7 is very
sensitive to live vegetation:

Reflectance

— Does not contrast well

among crop residues, soils,
and live vegetation.
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Remote Sensing Tillage Method
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* The Cellulose Absorption Index

(CAl) ideal for sensing dry oal
vegetation: '

— Targets an absorption 03|
occurring at 2101 nm
present for all sugars, |
including cellulose, but 01

rare for soil minerals.

Reflectance
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— Has a linear relationship
between bare soil, 100%
residue cover.
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— Contrasts crop residues
well among soils, live
vegetation.
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Narrowband CAl Best for Sensing Crop
Residues

Surface soil samples
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* Crop residues contrast well with all soils, green vegetation.



SINDRI

ASTER SWIR Normalized Difference Residue

Index (SINDRI) Also Good

Surface soil samples
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9 soils have SINDRI > 0.02, lacking contrast.
Residues and green vegetation also lack contrast.



Landsat TM Bands not so Good

Surface soil samples
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* Many soils, residues lack contrast.

* Green vegetation has a much stronger signal than residues or
soils- will strongly bias mixed pixels.



Remote Sensing Crop Residue: Indiana 2006
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* ASTER SWIR-based indices work well, but are more affected by soils than CAl.

* Landsat TM- based indices do not separate well between residues, soils.




Remote Sensing Crop Residue: Ames, |A, 2007
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Remote Sensing of Plant Cover and
Chlorophyll

) fa”fpylRef'le"tal”CG'Spe"’”a' * Most plant cover/ condition remote
o} —on-s . sensing use Normalized Difference
giz :Eaizg Vegetation Index (NDVI):
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Remote Sensing Crop Canopy

Characteristics
* Growing season biophysical characteristics:

LAI map derived from CASI data
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CASI (Itres Research Ltd., Calgary, AB)- derived leaf area index (LAI) maps
throughout the summer 2008 growing season near Ottawa, ON. Data
acquired by York University (Toronto, ON).



Remote Sensing of Canopy Water and
Evapotranspiration

* Soil moisture deficiencies cause leaf stomata to close up:

— Evapotranspiration and photosynthesis decrease;
— Vegetation heats up;

— Yields can be negatively impacted.

* NIR and SWIR band at 1610 — 1650 nm can be used to estimate
canopy water content:

— SWIR band reflectance inversely related to leaf water content.

* HysplRI’'s thermal infrared (TIR) bands (10.8 and 12.0 um) will allow
for estimation of canopy evapotranspiration (ET).



Agricultural Greenhouse Gas Monitoring via Remote Sensing
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Conclusions

* Agricultural GHG fluxes can be monitored by combining
remote sensing and other geospatial data into
simulation models such as EPIC or Century.

— These can be calibrated against field measurements of
SOC.

* Most operational multispectral satellite sensors such as
Landsat, SPOT, Sentinel-2, etc. do not have appropriate
sensor bands for measuring tillage, a critical input to
GHG models.

* Hyperspectral systems such as HysplIRI will allow for
high-quality measurements of tillage and other crop
canopy characteristics, and advance GHG monitoring
efforts.

— These systems will also allow for calibration of future
advanced multispectral sensors.




