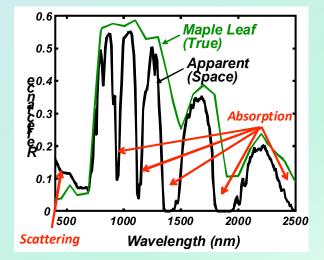


High-Speed FLAASH Atmospheric Correction for NASA Spectral Imagery SBIR Phase I Program

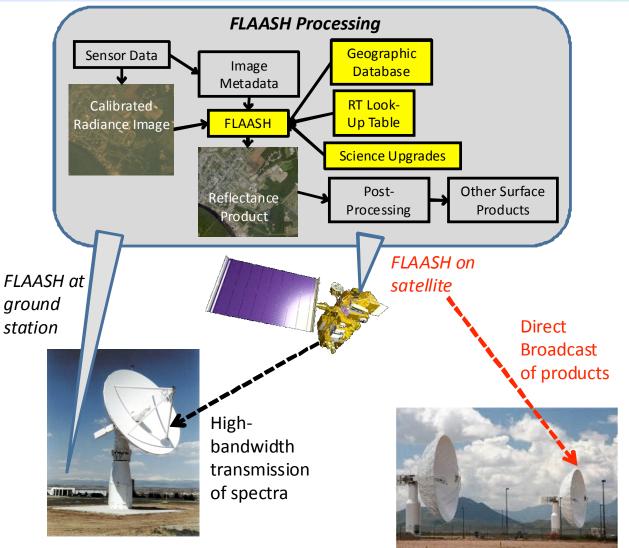
Tim Perkins and Steve Adler-Golden Spectral Sciences, Inc., Burlington, MA 01803

Pat Cappelaere Vightel Corp., Ellicott City, MD


HyspIRI Science Workshop, Washington D.C. 25 August 2011

- Problem
 - High duty cycle of upcoming missions such as HyspIRI will require high accuracy, fully automated, low latency, near real-time atmospheric correction (AC) processing
 - NASA's current AC algorithms are, or will soon be, outdated in both the science and the coding
- Solution
 - Transition NASA's current and future (HyspIRI) AC processing to a fast version of the C++ language FLAASH code
- Objectives
 - Port FLAASH to the Elastic Cloud or IAAS
 - Develop look-up tables (LUT) for nearreal-time FLAASH processing
 - Phase II: port to prototype flight hardware
- Team: SSI + Vightel
 - Thanks to Dan Mandl, Technical Monitor

Processing Concept

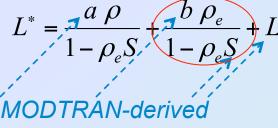


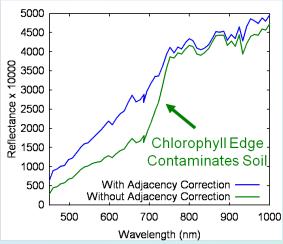
• Groundbased system:

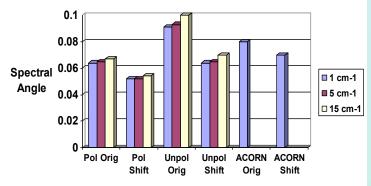
Will support
Hyperion,
Landsat, ALI,
MODIS, ASTER

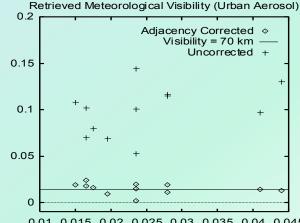
On-board system:

 For direct broadcast of products from HyspIRI, LDCM in near real-time


- Development
 - Code developed by SSI with primary support from AFRL, additional support from NGA, NASA, SSI
 - ENVI commercial product developed from original IDL code
 - FLAASH-C developed for NGA parallel processing system; latest version approved for public release May 2011
- Science/Features
 - MODTRAN radiative transfer; pixel-by-pixel water retrieval; scene visibility retrieval; adjacency effect and spectral smile compensation; spectral polishing; wavelength self-calibration
- Operating Modes
 - Interactive (IDL) or batch (FLAASH-C)
 - High-speed MODTRAN LUT option (ongoing development)
- Demonstrated Sensor Support
 - AISA-ES, ALI, ARTEMIS, ASAS, ASTER, AVHRR, AVIRIS, CASI, Compass, GeoEye-1, HYDICE, HyMap, Hyperion, IKONOS, Landsat, LASH, MaRS, MASTER, MODIS, MTI, Probe-1, QuickBird, RapidEye, SPOT, TRWIS, WorldView-2


State-of-the-Art FLAASH Science


RT equation


Adjacency compensation
improves accuracy

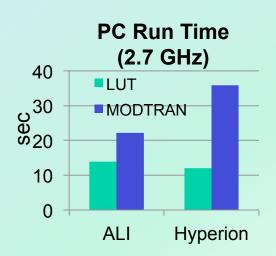
Validation with Ground Truth

Visibility retrieval from small dark areas

0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 Est. 660 nm Reflectance

Technical Approach: Speedup via Look-up Tables (LUTs)

- Large pre-calculated LUTs replace the custom MODTRAN calculations in FLAAASH
 - Eliminates the Fortran module and around half the FLAASH run time
- Feasibility previously demonstrated (2000 Ph 1 program)
 - LUTs containing MODTRAN radiance spectra were built for nadir viewing from 3 km and 20 km (e.g. AVIRIS) altitudes
- LUTs have now been built for TOA nadir and off-nadir viewing
 - Utilize PCA compression to save storage
 - Current LUTs developed for rural aerosol model (5-300 km visibility)
 - Water vapor to 1.6xTropical, view angle to 30 deg off nadir, solar angle 0-70 deg, surface elevation 0-3.5 km


Phase I Accomplishments

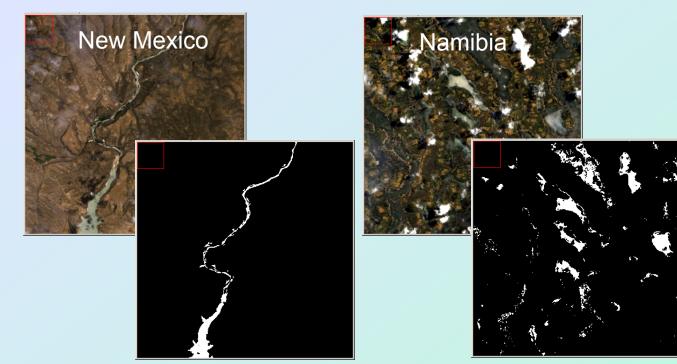
- Initial LUT Development
 - Developed LUT for rural aerosol ~ 1CPU-week of MODTRAN calculations
 - >100-fold compression with PCA (16 Gbytes \rightarrow 100 Mbytes)

FLAASH-C Development

- Support compressed LUT files
- Timing study: MODTRAN vs. LUT time comparison for MSI and HSI
- New feature: atmospherically corrected radiance (shows blackbody source in "hot" pixels for characterizing fires, volcanoes, etc.)
- **Demonstrations:** EO-1 Data (Hyperion and ALI) LUT and/or MODTRAN versions
 - On Elastic Cloud automatically processing new scenes
 - As a WCPS algorithm re-processing scenes on-demand as a
 - On IPM Telera (but not yet multicore)

LUT Evaluation

- LUT is a compressed spectral database supporting off-nadir viewing from the TOA
 - 145000 table entries, 350 2500 nm, 5 cm⁻¹ resolution
 - After compression, roughly the size of a single Hyperion image
- Retrieved hyperspectral reflectance values agree closely with direct results from MODTRAN


Hyperion Reflectance Spectra

Data Product Generation

- Many data products could be generated from the atmospherically corrected data in near-real time
- Bringing the coding into FLAASH would avoid time- and memoryconsuming cube I/O
- A prototype of a flood map product is shown here

Spectral Angle Mapper finds turbid water in two different ALI reflectance scenes

Phase II Plans

- Code Development
 - LUTs for standard aerosols/dusts (rural, maritime, urban, desert)
 - Extend to lower altitudes for aircraft (e.g. EMAS)
 - Parallelize for multiprocessor systems
 - Aerosol retrieval improvements, e.g. geographically dependent aerosol type, spatially varying AOD
 - Low-latency data product generation within FLAASH
 - Thermal IR data product(s) taking advantage of fusion with VNIR/SWIR
 - Radiance modeling for low-latency sensor calibration with cal/val sites
- Code Integration
 - Fully operational Sensor Web and IAAS data processing, distribution
 - Prototype HyspIRI flight system demo (Space Cube, Maestro)
 - Integrate with external data product codes
- Validation
 - Demonstrate accurate, automated atmospheric correction and data product generation across a variety of sensors, scenes, platforms