Coral Reef Remote Sensing Science
Objectives and Requirements
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Coral Reefs: Global Distribution and Importance
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IPCC AR4: Coral reefs are one of four cross-chapter case studies

Parry, M.L., O.F. Canziani, J.P. Palutikof, P.J. van der Linden and C.E. Hanson, Eds., 2007: Cross-chapter case study.
In: Climate Change 2007: Impacts, Adaptation and Vulnerability. Contribution of Working Group Il to the Fourth
Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cam-
bridge, UK, 843-868.

C2 Impacts of climate change on coral reefs

C2.1 Present-day changes in coral reefs
C2.1.1  Observed changes in coral reefs (Chapter 1, Section 1.3.4.1)
C2.1.2 Environmental thresholds and observed coral bleaching (Chapter 6, Box 6.1)

C2.2 Future impacts on coral reefs
C2.2.1  Are coral reefs endangered by climate change? (Chapter 4, Box 4.4)
C2.2.2 Impacts on coral reefs (Chapter 6, Section 6.4.1.5)
C2.2.3 Climate change and the Great Barrier Reef (Chapter 11, Box 11.3)
C2.2.4 Impact of coral mortality on reef fisheries (Chapter 5, Box 5.4)

C2.3 Multiple stresses on coral reefs
C2.3.1  Non-climate-change threats to coral reefs of small islands (Chapter 16, Box 16.2)



Global Stresses to Reefs

SST: Increased Coral Bleaching Ocean Acidicifation: Decreases in Calcification Rates
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The Primary Coral Reef Problem:
Phase Shifts from Coral-Dominated to Algae-Dominated

® Rough ® Smooth
¢ High productivity/calcification ¢ | ow productivity/calcification
¢ "Healthy” * Not “healthy”



State of the Art in Coral Reef Structure Assessment: Resource Inventory

Photoquadrat Transects: detailed, laborious, small footprint

Rose Island, American Samoa NOAA/NMFS/PIFSC 2008
Towed-diver Benthic Surveys, 2002, 2004, and 2006
Live Coral Percent Cover

Percent Live Coral Cover
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“Manta-Tows”: quick, semi-quantitative, large footprint




75°12'W 75°8'W
- - - = <w" -

2011/08/14
02011/08/15
2011/08/16
2011/08/17

75°12'W 75°10'W 75°6'W




Coral Reefs: Sampling Problem
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. ~9,000 reefs in the world, covering 500,000 km?
- spread across 200,000,000 km? of ocean
- Quantitative in situ surveys cover only 10s to 100s of km2 worldwide

« Current estimates of reef loss are based on direct observation of only
0.01-0.1% of the world’s reef area

+ Only satellite remote sensing can provide the uniform data set
required for assessment of the global status of coral reefs

30°N

15°N

15°S

30°S



Five sources of
light received by a
remote sensor
pointed at a coral
reef.

Only light reflected
at the reef surface
can provide
information about
the reef.

After Kirk (1994)

Reflection of
skylight at
surface

Radiance collected
by remote sensor

Scattering of sunlight
/71 within atmosphere

Reflection of direct solar
beam at water surface

Reflection of sunlight
at reef surface

Scattering of sunlight
within water




Coral Reef Ecosystem Spectro-Photometric Observatory

CRESPO
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Hochberg & Atkinson (2003)
Table 1

Classification error matrices for in situ spectral reflectances of three coral reef

classes: coral, algae, and carbonate sand

(A) Full-resolution: overall accuracy = 98%

Actual class
Algae Coral Sand
Predicted class Algae 2726 (99.2) 75 (3.3) 1 (0.3)
Coral 23 (0.8) 2168 (96.6) 0 (0.0)
Sand 0 (0.0) 1 (0.0) 320 (99.7)
(C) AVIRIS: overall accuracy = 98%
Actual class
Algae Coral Sand
Predicted class Algae 2725 (99.1) 74 (3.3) 1(0.3)
Coral 24 (0.9) 2170 (96.7) 0 (0.0)
Sand 0 (0.0) 0 (0.0 320 (99.7)
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Conclusion: Contiguous, 10-nm-wide wavebands over range 400-700 nm
provides excellent spectral discrimination between coral, algae, and sand
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Conclusion: Contiguous, 10-nm-wide wavebands over range 400-800 nm is
excellent band set for retrieval of shallow water bathymetry
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WATER LEAVING REFLECTANCE
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Conclusion: Combined wavebands across both NIR and SWIR (i.e., 0.865,
1.04, 1.24, 1.64, and 2.25 pm) provide very good atmospheric correction



Conclusion: Glint is readily correct-
able, provided (1) suitable refer-
ence waveband(s) at wavelengths
> 900 nm and (2) good atmo-
spheric correction

Various Workers & HyspIRI Sun Glint Subgroup




Summarizing Waveband Requirements for a Coral Reef Satellite

« Accurate atmospheric correction is crucial to provide accurate water-leaving radiances in the VIS that are used
as input to water column correction.

« Accurate water column correction is crucial to provide accurate seafloor optical properties that are used to
discriminate between coral reef bottom-types.

« The most accurate atmospheric correction for shallow waters—including coral reefs requires SWIR wavebands.
NIR wavebands can be used alone, but the guaranteed result is underestimates of VIS water-leaving radiance.
Errors in VIS water-leaving radiance will cascade to errors in retrieval of seafloor optical properties. Errors in
seafloor optical properties will result in misclassifications of coral reef bottom-types.

« The most accurate water column correction for shallow waters—including coral reefs—requires wavebands
distributed across VIS wavebands. A narrower range of wavebands can be used, but the result will be less
accurate retrievals of seafloor optical properties. Errors in seafloor optical properties will result in misclassifica-
tions of coral reef bottom-types.

- Using a wavelength range 0.4-2.5 um does not guarantee perfect classification of coral reef bottom-
types, but it does guarantee the best possible results.
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State of the Art in Coral Reef Functional Assessment: Biogeochemistry
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Remote Sensing of Reef Biogeochemistry
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Reef Remote Sensing:
Next Steps

After Kirk (1994)

Radiance collected
by remote sensor

(1) Scattering of sunlight
/7\ within atmosphere

—

Reflection of direct solar
beam at water surface

Reflection of
skylight at
surface

Reflection of sunlight
at reef surface

Scattering of sunlight
within water

(1) Atmospheric Correction
ATREM
FLAASH
Tafkaa

Glint-Aerosol Discrimination
27?

(2) Glint Correction
NIR-VIS Empirical Linear Relationship
Subtraction of NIR Reflectance
Uniform Spectral Offset Approach
Glint-Aerosol Discrimination

(3) Water Column Correction
Optimization
Look-Up Tables
m

(4) Successful Integrationof 1 +2 + 3
m



Coral Reef Ecosystem Spectro-Photometric Observatory CRESPO
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AO0-99-OES-02 UnESS Proposal



HysplIRI Coral Reef Science

HyspIRI data will be used to pursue the following objectives:

« Measure distributions of coral, algae and sand for >25% of reefs worldwide. This will be an unprecedented
survey of the current status of coral reefs, and the results will serve as a baseline for future change detection.

- Examine trends of coral, algae and sand for pristine reefs versus human-impacted reefs. This comparison of
reefs will enable scientists to identify a set of conditions that define a “healthy” reef (no such definition exists).

- Determine how distributions of coral, algae and sand vary with reef morphology, underlying geology,
latitude, and oceanographic conditions of wind, waves, and nutrients. To understand reef health, it is
important to understand how environmental factors influence the amounts of coral, algae and sand that are
present.

- Generate map products to help regional and local monitoring and scientific investigation. Such maps can be
used to identify sites that are crucial for conservation, as well as sites that require more intensive study to
understand the ecosystem.

- Provide ancillary data for management and science. Several secondary products will be of great use for
monitoring and investigating hydrodynamics and biogeochemistry of reef systems.



Coral Reef Satellite Mission Success Criteria

Minimum Success

Maps showing the distributions of coral, algae and sand for 10% of the world's reefs
over the course of a single year

Targeted Success
Maps and secondary products for 25% of the world’s reefs over a two-year period
Ideal Success

Maps and secondary products for 50% of the world’s reefs over a two-year period



