Practical considerations
regarding the use of HyspIRI
for fire monitoring
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Decadal Survey — Thematic Questions

TQ2. Wildfires

How are global fire regimes changing in response
to, and driven by, changing climate, vegetation, and

land use practices?

Is regional and local scale fire frequency changing?
What is the role of fire in global biogeochemical
cycling, particularly trace gas emissions?

Are there regional feedbacks between fire and
climate change?
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Decadal Survey — Thematic Questions

CQ2. Wildfires

How does the timing, temperature and frequency of
fires affect long-term ecosystem health?

How does vegetation composition and fire temperature
Impact trace gas emissions?

What are the feedbacks between fire temperature and
frequency and vegetation composition and recovery?
How does vegetation composition influence wildfire
severity?

How does invasive vegetation cope with fire in
comparison to native species?
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Active Fires

Planck Function and Fire Temperature

Current detection
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orbiting platforms
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21 4.0 High-range channel for active fire detection.
22 4.0 Low-range channel for active fire detection.
31 11.0 Active fire detection, cloud masking.

32 12.0 Cloud masking.
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Benefits
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HyspIRI Active Fires
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Hyperspectral Fire Detection

Dennison, P.E., and D.S. Matheson, 2011.

Comparison of fire temperature and fractional area
modeled from SWIR, MIR, and TIR multispectral and
SWIR hyperspectral airborne data. Remote Sensing of
Environment, 115, 876-886.

Dennison, P.E. and D.A. Roberts, 2009.

Daytime fire detection using airborne hyperspectral data.
Remote Sensing of Environment, 113, 1646-1657.

Dennison, P.E., 2006

Fire detection in imaging spectrometer data using
atmospheric carbon dioxide absorption. International

Journal of Remote Sensing, 27, 3049-3055. CO, Absorp. Index = Lo

. (L2.43_um_L2.06_um)
HFDI = — '

‘_ Ly 43m + L2o6um )
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Vodacek, A., et al., 2002. 1990 2040

Remote optical detection of biomass burning using a
potassium emission signature. International Journal of
Remote Sensing, 13, 2721-2726. potassium emission index =
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780
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Detection Envelopes
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Detection Envelopes

HyspIRI
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Cal/Val
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CO, emissions from forest loss

G. R. van der Werf, D. C. Morton, R. S. DeFries, J. G. J. Olivier, P. S. Kasibhatla, R. B. Jackson, G. J. Collatz
and J. T. Randerson

Deforestation is the second largest anthropogenic source of carbon dioxide to the atmosphere, after
fossil fuel combustion. Following a budget reanalysis, the contribution from deforestation is revised
downwards, but tropical peatlands emerge as a notable carbon dioxide source.

“The combined contribution of deforestation, forest
degradation and peatland emissions to total
anthropogenic CO2 emissions is about 15% (range
8—20%)"
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Atmos. Chem. Phys., 10, 11707-11735, 2010

www.atmos-chem-phys.net/10/11707/2010 \ Atmospherlc
doi:10.5194/acp-10-11707-2010 Chemls_try
© Author(s) 2010. CC Attribution 3.0 License. and Physics

Global fire emissions and the contribution of deforestation. savanna.
forest, agricultural, and peat fires (1997-2009)

G. R. van der Werf!, JT. Randerson’, L. Giglio®*, G. J. Collatz*, M. Mu?, P. §. Kasibhatla®, D. C. Morten?,
R. S. DeFries%, Y. Jin®, and T. T. van Leeuwen’

"While the sum of deforestation, © e
degradation, and peat fire emissions =
accounted for about a quarter of total C
emissions, for CHg4 these sources were key
contributing to 44% of total CH4

emissions of 20 Tg CH4 year-1. This was

mostly due to the large EF for CHy in peat
areas, which was 3x as high as the EF for
tropical deforestation fires, and almost 10x

that of the EF for grassland and savanna  pssss
ﬁ res” savanna woodland deforestation forest agriculture peat
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SEVIRI-derived FRP (MW)
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SEVIRI vs.
MODIS per-
fire FRP
comparison
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OCBC x 10%(g)
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Burned Area

Agriculture fires -~

Till vs. No-Till o

Till vs. Harvested AR S,

Harvested vs. Burnt / Vi

Burnt vs. Till ~
Example of the mosaic of recently /e & : :
burned fields, newly harvested, plowed [ L 7 vy :, , PP %
fields where the spectral resolution of ~ Hi Th NS g ~oF
Landsat ETM+ is insufficient for Subset of scene 176/26, acquired on 07/25/2001
producing an accurate thematic map 7} Y S &£ .. 75

Courtesy of Luigi Boschetti
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Limitations
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VSWIR -TIR swath mismatch

150 km 600 km
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Cloud Cover

5 —19 day repeat at the equator, the region most
responsible for biomass burning and LCLUC
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Sun Glint

Need reflective bands to
identify glint, otherwise
detection algorithm can be
fooled into thinking that glint-
contaminated pixels contain
fires.

Most, if not all, of the fire pixels
in this scene are true fires. Note
how MODIS algorithm
continues to function (albeit in a
degraded mode) in areas
affected by sun glint.
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Cloud Mask
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Detection algorithm
must function in the
presence of small,

convective clouds,

which in some ways
resemble small fires
during the daytime.




Coastal Alarm Rejection

This rejection test helps to
eliminate false alarms caused by
cooler water pixels
contaminating the contextual
background. Note: We will need
a 60 m land/sea mask for
HysplIRI active fire detection and
burned area mapping.

Terra MODIS
Shanghai - 18 July
2004, 02:45UTC
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Conclusions

HyspIRI will provide unique capabilities for
fine spectral and spatial characterization of
wildfires (fuels, energy, emissions)

While offering cal/val opportunities for
coarser resolution sensors

Improve our understanding of fire behavior as
a function vegetative condition, microclimate
conditions, land cover [/ land use, etc.
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Conclusions

Science, not operational
Regular monitoring of wildfires not possible with
such a large gap in repeat visits

Rather, the opportunities will exist to generate a
robust snapshot of data understanding fires in a given
time and place.

3 year mission (hopefully to see add-on
missions) is too short for long term records
needed.

Persistent cloud cover and 19-day repeat time
means the tropics will have limited “looks”.
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