Potential Contributions of HyspIRI to the Remote Sensing of Volcanic Plumes

Vincent J. Realmuto
Jet Propulsion Laboratory
23 August 2011

H₂O Vapor vs. SO₂ Absorption

H₂O Vapor Absorption Affects the Entire 8-12 μm Atmospheric Window:

Add Channel Sensitive to H₂O to Facilitate Atm. "Corrections"

Considerable Variation in H₂O Within a Scene:

Can We Characterize These Variations?

Very Strong H₂O Vapor and SO₂ Absorption in HyspIRI 7.3 μm Channel:

Can We Separate Effects of H₂O and SO₂?

7.3 μ m Not Suitable for Mapping Plumes Below 5 km? [Prata et al., 2003]

Heritage for HyspIRI Spectral Response

ASTER D-Stretch Depicting the Passive Emission of SO₂

ASTER D-Stretch Depicting Ash, water/ice, and SO₂ Released by Explosive Eruption

Notional HyspIRI TIR Response vs. Spectra of Plume Materials

Retrieval of Surface Temperature and SO₂ Concentration

Ground Temperature has Stronger Influence on Perceived Radiance Than the SO₂ Concentration

Simultaneous Retrieval of Temperature and SO₂ is Difficult; Temperature is Well-Constrained but SO₂ is Poorly-Constrained

Cascading (Serial) Retrieval is a Better Option:

Estimate Surface Temperature

(Estimate H₂O Vapor Factor)

Estimate SO₂ Concentration

Repeat Temperature Estimation w/ Prior H₂O and/ or SO₂ Estimates

Repeat H₂O and/or SO₂ Estimation with New Temperature

Exit When $\Delta T < Threshold$

Retrieval Procedure Requires Profiles of Atm. Temp, $\rm H_2O$, and $\rm O_3$ as Input

Radiance Spectra from Clear Path (Plume-Free) Regions are used to "Tune" the H₂O and O₃ Profiles

Tuning is a Time-Consuming Process: Retrieval of $\rm H_2O$ is More Efficient and a Better Characterization of Variations in $\rm H_2O$

Two Candidates for H_2O Channel: MODIS 28 (7.3 μ m) and MODIS 33 (13.3 μ m)

Strong H₂O Absorption in MODIS 28 Obscures the Surface

Moderate H₂O Absorption in MODIS 33 Does Not Obscure the Surface

Simulated Retrievals of H₂O and SO₂

Evaluate Five Configurations of Channels
ASTER, HyspIRI, MODIS 29-32, MODIS 28-32, and
MODIS 29-33

Synthetic Radiance Spectra as "Observations" Surface Temp = 275 K, SO_2 Conc = 2.5 mg/m³, H_2O Factor = 0.75 Plume Altitude = 15 km, Sea Surface Background, Sarychev Atm. Profiles

Three Retrieval Modes/Configuration

Temperature: Assume $SO_2 = 0$, $H_2O = 0.75$ (Tuning Mode) H_2O Factor: Assume $SO_2 = 0$ (Potential New Tuning

Mode)

H₂O + SO₂: Potential New Retrieval Mode

ASTER Simulation Results

Temperature Under-Estimated, Misfit Spectrum 4 – 10%

H₂O: Misfit Spectrum < 6%

 $H_2O + SO_2$: Misfit Spectrum < 2%

 Δ % Axis Range = 24%

HyspIRI Simulation Results

Temperature Over-Estimated, Misfit Spectrum ~75% at 7.3 μm

 H_2O : Misfit ~20% at 7.3 μ m

 $H_2O + SO_2$: Misfit Spectrum < 2%

 Δ % Axis Range = 100%

MODIS 29-32 Simulation Results

Temperature Under-Estimated, Misfit Spectrum Between 5 – 11%

H₂O: Misfit Within ±3%

 $H_2O + SO_2$: Misfit Spectrum < 1%

 Δ % Axis Range = 19%

MODIS 28-32 Simulation Results

Temperature Over-Estimated, Misfit Spectrum ~80% at 7.3 µm

 H_2O : Misfit ~20% at 7.3 μ m

 $H_2O + SO_2$: Misfit Spectrum < 10%

 Δ % Axis Range = 120% (Worst Misfit)

MODIS 29-33 Simulation Results

Temperature Under-Estimated, Misfit Spectrum < 6%

 H_2O : Misfit < 3%

 $H_2O + SO_2$: Misfit Spectrum < 1%

 Δ % Axis Range = 8% (Best Misfit)

Retrieval Accuracy

ASTER: Best Overall Performance

MODIS 28-32: Worst Overall Performance

MODIS 29-32/MODIS 29-33: Roughly Equal Performance; Slightly Better Than HyspIRI

Presence of 7.3 μm Channel Degrades Performance

Note: All Configurations Produced Exact Retrievals in Traditional (TBound + SO₂) Mode

MODIS-Based Retrievals of H₂O and SO₂

Evaluate Three Configurations of Channels MODIS 29-32, MODIS 28-32, and MODIS 29-33

Compare Temperature and SO₂ Retrievals with Fixed and Free H₂O Factors

Region-of-Interest Included SO₂, Ash, and Clear-Path Pixels

MODIS 29 - 32 Results

Fixed H₂O Factor

Free H₂O Factor

Improved Fit: ∆% Range Reduced from 2% to 0.5%

TBound Estimates
Decreased ~0.5%

SO₂ Estimates Decreased 5 – 10%

MODIS 28 - 32 Results

Fixed H₂O Factor

Misfit: Mean Prediction vs. Observation Delta: Mean Prediction vs. Observation

9 10 11 WAVELENGTH (μm)

Free H₂O Factor

9 10 11 WAVELENGTH (µm)

BRIGHTNESS TEMPERATURE (K)

250

Improved Fit: ∆% Range Reduced from 8% to 1%

TBound Estimates Increased ~1.5%

SO₂ Estimates Increased ~ 50%

MODIS 29 - 33 Results

Fixed H₂O Factor

Free H₂O Factor

Improved Fit: Δ% Range Reduced from 3% to 0.7%

TBound Estimates Decreased < 0.5%

Problematic Interpretation of SO₂ Results:

Reduction in Estimates < 10% ?

Spike @ -100% is Significant!

Spike @ 0 Change Significant?

Spectra of Plume Materials

Summary Remarks

Single Channel @ 7.3 μ m Does Not Provide Sufficient Resolution to Separate the Effects of H₂O and SO₂

Characterizing Spatial Variations in H₂O Has Broader Science Impact than SO₂ Detection:

Shift Channel to Longer Wavelength (~ 8.0 μm)

Definitive Solution to Channel Position Requires HyTES Data

Adopting 13.3 μm Channel (MOD 33) for MODIS-Based Plume Mapping

Not Necessary for HyspIRI Due to High Spectral Resolution Between 8 and 9 μm

Food For Thought: HyspIRI Channel Between 9.5 and 10 μ m Would Help Discriminate Sulfate Aerosols from SO₂ or Ash

