HyspIRI Mission Concept

Bogdan Oaida, with contributions from Michael Mercury [JPL]

[bogdan.oaida@jpl.nasa.gov]

Jet Propulsion Laboratory California Institute of Technology

National Aeronautics and Space Administration

Jet Propulsion Laboratory California Institute of Technology Pasadena, California

Copyright 2011 California Institute of Technology. Government sponsorship acknowledged.

Jet Propulsion Laboratory California Institute of Technology Pasadena. California

HyspIRI Mission Architecture

Jet Propulsion Laboratory California Institute of Technology Pasadena, California

HyspIRI Global Coverage

National Aeronautics and

Pasadena. California

Data Acquisition Strategy

 Instrument modes change multiple times each orbit, but are clearly defined by geography and spacecraft location

Imaging Mode Deep Land Coastal Greenland Instrument Antarctica Ocean **VSWIR** 60 m 60 m 1 km 1 km 1 km 60 m 60 m 1 km 1 km 1 km TIR

Target Map

> Jet Propulsion Laboratory California Institute of Technology Pasadena. California

HyspIRI Downlink Data Volume

	Rate	On-board Compression
VSWIR_land	804.1 Mb/s	3:1
VSWIR_shallow	865.9 Mb/s	3:1
VSWIR_ocean	3.9 Mb/s	3:1
TIR_land	130.2 Mb/s	2:1
TIR_shallow	130.2 Mb/s	2:1
TIR_ocean	0.6 Mb/s	2:1

	Avg (Tb)	Min (Tb)	Max (Tb)
Per Day	4.64	3.59	5.29
Per Orbit	0.31	0.00	0.81

Total downlinked data volume for the 3 year mission: 5024 Tbits

- Baseline selected to minimize system level cost and risk
- On-board storage capacity
 - 1 Tb
 - 0.31 Tb/orbit
 - WorldView-1 and -2 have 2.2 Tb SSR
 - WorldView1: 0.33 Tb/orbit
 - Different downlink strategy requires larger SSR than HyspIRI
 - WorldView2: 0.52 Tb/orbit
 - 30% margin added to calculated required SSR size

Aug	23-	25,	2011
-----	-----	-----	------

National Aeronautics and Space Administration Jet Propulsion Laboratory

Jet Propulsion Laboratory California Institute of Technology Pasadena, California

Baseline Flight System Concept

TIR

RADIATOR

X-Band

ANTENNA

IPM

ANTENNA

PATCH

ANTENNAE

- Industry procured spacecraft bus
 - SA-200HP used as an example for the study to identify and cost needed modifications
- HyspIRI specific
 - Payload integrated on the top plate (TIR, VSWIR) and inside the S/C
 - Configuration chosen to minimize/eliminate thermal impacts on the payload radiators
 - Spacecraft Dry Mass (CBE): 520 kg
 - Launch Mass: 681 kg
 - JPL DP Margin: 31%

Jet Propulsion Laboratory California Institute of Technology Pasadena, California

Baseline Flight System Concept

							a 1161
		Requireme	nts	RSDO SA-200HP	Нуѕрікі SA-200НР	r	Viodifications
Orbit		626 km 10:30	LTDN	\checkmark	\checkmark		-
Mission duration		3 years, selective redundancy		4 years, selective redundancy	3 years, single string	Remo	ve redundancy to reduce cost
Thermal		Passive archit	ecture	\checkmark	\checkmark		-
Downlink		800 Mbp	S	80Mbps	800 Mbps	D	ual-pol X-band
Propellant		75 m/s 37 kg		131 m/s 67 kg tank	131 m/s 67 kg tank		-
Onboard record	Onboard recorder 1 Tbit		134 Gbits	1Tbit	SEAKR SSP-R		
Payload mass	ayload mass 126kg 666 kg 666 kg		Supp	oort structure for Instuments			
Payload Power 885 W 650 W		965 W	Single a	wing configuration, dd one panel			
Pointing Knowledge				0.5 arcsec (3σ)	<=0.5 arcsec (3σ)	Replace	d one of two coarse
Pointing Accurac	cy	See table be	elow	16 arcsec (3σ)	<=16 arcsec (3σ)	Ball CT-0	502 star tracker with le Lockheed Martin
Pointing Stability				0.1 arcsec/sec (3σ)	<=0.1 arcsec/sec (3 σ)	AST-	301 star tracker.
Pointing	VSWIR Requirement	TIR Requirement		Rationale			Driver
Knowledge	< 48 µrad (3ơ/ axis)	< 48 µrad (3ơ/ axis)	<30m (3 σ) post-reconstruction orthorectification knowledge at 626km altitude TIR			TIR	
Accuracy	<4.5 mrad (3ơ/axis)	<4.5 mrad (3 σ / axis)	VSWIR: L	VSWIR: Limits cross-track error to < 3 km on the surface VSWIR			VSWIR

Space Administration Jet Propulsion Laboratory California Institute of Technology

National Aeronautics and

Pasadena. California

Alternative Flight System Concept

- Based on RFI response from ATK
 - Uses Responsive Space Modular Bus (RSMB) architecture
- HyspIRI specific
 - Spacecraft Dry Mass (CBE): 511 kg
 - Launch Mass: 671 kg
 - JPL DP Margin: 35% (assumes Taurus 3210)
 - Required Power (CBE): 640W
 - Available Power: 1028W

Jet Propulsion Laboratory California Institute of Technology Pasadena, California

Science Payload Accommodation and System Margins

Accommodations	VSWIR	TIR
Mass (CBE)	55 kg	60 kg
Volume	1.1 x 0.5 x 0.8 m	1.2 x 1.1 x 0.6 m
Power	41 W	103 W
FOV (crosstrack)	13.62 deg	50.7 deg
FOV (alongtrack)	95.9 microrad	95.9 microrad
Orientation	4 deg to starboard	nadir

	Required	Design	Margin (D-R)/D
Swath width VSWIR	141km	151 km	6%
Swath width TIR	536km	600 km	11%
Recorder capacity	0.8 Tb	1.0 Tb	20%
Power	620 W (CBE)	965 W	36%
LV mass capability	520 (CBE, dry)	790 kg	34%

Aug 23-25, 2011

National Aeronautics and Space Administration

Jet Propulsion Laboratory California Institute of Technology Pasadena. California

Launch Vehicle Concept

1.50m

Alternate Orbits Compatible with HyspIRI

There is flexibility in the HyspIRI orbit design to accommodate a shared launch, should one be available, without sacrifices to science return

Jet Propulsion Laboratory California Institute of Technology Pasadena, California

U.S. Launch Vehicle Compatibility

LV	Throw Mass* (kg)	JPL Margin	Fairing (in)	Successful Launches	Availability	Estimated Cost	Comments
Taurus (3210)	790	31%	92	6/9 (1/1)	Yes	~\$54M	Baseline; only one 3210 launch
Minotaur IV	1100	49%	92	2/2	DoD Only	~\$50M	
Falcon 9	7500	>90%	204	2/2	Yes	~\$55M	both flights were with Dragon capsule
Atlas V 4xx	~10000	>90%	157	17/18	TBD	TBD	401 had 9/10 Iaunches
Delta IV Medium	8600	>90%	157	3/3	Yes	~\$140	
Athena IIc	1700	69%	92	0/0	2012	TBD	2/3 launches of the II version

* For HyspIRI Orbit: 626km, sun-sync

Space Administration Jet Propulsion Laboratory California Institute of Technology Pasadena California

National Aeronautics and

Deorbit Analysis

NASA mandates compliance with NASA-STD 8719.14 Orbit Debris & Reentry

"A spacecraft or orbital stage with a perigee altitude below 2000 km shall be disposed of by ... :" "The potential for human casualty is assumed for any object with an impacting kinetic energy in excess of 15 Joules: "

"Atmospheric reentry option:

Leave the space structure in an orbit in which natural forces will lead to atmospheric reentry within 25 years after the completion of mission but no more than 30 years after launch"

HyspIRI is compliant as analysis of the spacecraft orbit and the geometry of the observatory indicates reentry within 18 years from EOL "For uncontrolled reentry, the risk of human casualty from surviving debris shall not exceed 0.0001 (1:10,000)."

HyspIRI is currently compliant as simulation performed with NASA's Debris Assessment Software (DAS 2.0.1) shows a probability of 1:42,300

Ground System Concept

- Data Downlink
 - KSAT Ground network
 - Svalbard @ 800 Mbps Dual-pole X-Band (existing)
 - Poker Flats @ 800 Mbps Dualpole X-Band (in development)
 - Other stations available
 - Almost 100% data return with 1 Tbit SSR on spacecraft
- Data Processing
 - SDS sized to process L0 through
 L2 data for both instruments
 - Deliver L2 data products to DAAC
 - L3 data products produced by users

HyspIRI will utilize existing infrastructure with proven capability to downlink and process all science data

BACKUP

National Aeronautics and Space Administration

Jet Propulsion Laboratory California Institute of Technology Pasadena, California

HyspIRI Science Workshop 2011 - Washington, D.C.

HyspIRI Mission Concept

Orbit Selection

- Key Orbit Design Considerations
 - Local time of observations
 - Sun-synchronous
 - 10:30 AM LTDN
 - Altitude
 - Low Earth Orbit
 - Repeating Ground track
 - Global coverage in a minimum number of days given the swathwidth of each instrument.
 - VSWIR: 19 days revisit at the equator
 - TIR: 5 day revisit at the equator (1 day + 1 night)
- 626 km altitude at equator suits the needs of both instruments

Orbit selection and operations concept meet science requirements with infrequent ground commanding or maintenance.

Operations Concept

- Systematic mapping vs. pointing capability
- Target map driven No need for uploading acquisition sequences
- High resolution mode and Low resolution mode
- Direct Broadcast capability
 - Uses Intelligent Payload Module
 - Applications-driven

Operational Requirement	VSWIR	TIR
10:30 am sun-sync orbit	✓	✓
626 km altitude at equator	\checkmark	✓
19 days revisit at the equator	\checkmark	
5 day revisit at the equator		✓
Day Observation	\checkmark	✓
Night Observation		✓
Pointing strategy to reduce sun glint	\checkmark	
Surface reflectance in the solar reflected spectrum for elevation angles >20	✓	
Avoid terrestrial hot spot	\checkmark	
Monthly Lunar View calibration	\checkmark	✓
Weekly Solar View Calibration	✓	
Blackbody View Calibration		✓
Deep Space View Calibration		✓

Key Driving SDS Design Requirements

- Data Downlink Volumes:
 - Data Product Types: 2
- 2 Level 0's, 2 Level 1's, 2 Level 2's, *tbd* L3

5.3 Tb/day Max. (4.6 Tb/day Mean)

• Data Product Availability:

Product Application	Nominal Latency From Receipt of Required L0a Data at Processing Node	Comments
Routine Science	1 week – 2 weeks	Products meet science/calibration specifications
Priority Target Events	1 day	Data acquisitions are not routinely planned but event-driven Products are L1 and L2/3 in limited quantity Products may not meet science/calibration specifications
Intelligent Payload Module Direct Broadcast	No latency requirement for SDS	Data broadcast via the IPM will not end up at the SDS

Total Mission Data Volume*:	47.2 Tbits (6.2 Tb L0B's, 18.6 Tb L1B's, 22.5 Tb L2's) per day 58.2 Pb over mission life
Processing Loading:	Sized to meet respective product latency requirements (no backlog and with margin to include <i>one</i> reprocessing campaign
SDS sized for 5.2 Tb/day	

98.1% of the time, less than 5.2 Tb is downlinked per day

Notes: * Mission data volume based on maximum L0A downlink volume; exclusive of data from Direct Broadcast; Assumes all L0 processed to L1 & L2; all in 16-bit per sample; Assumes data compression ratios of 3:1 for all VSWIR and 2:1 for all TIR image bands; assumes no compression for ancillary bands;

Tb – Terabits (10^12 bits); Pb – Petabits (10^15 bits)