Estimation of Rangeland Changes & Evapotranspiration Using Multispectral Thermal Infrared Data

Andy French¹, Tom Schmugge², Juan Manuel Sanchez³, Enric Valor⁴, Cesar Coll⁴ 1 U.S. Arid Land Agricultural Research Center, USDA/ARS, Maricopa, Arizona 2 Physical Sciences, New Mexico State University 3 University of Albacete 4 University of Valencia

Acknowledgements

Al Rango Kris Havstad Jornada Experimental Range, USDA/ARS

Outline

Rangeland cover change using thermal infrared with ASTER & MASTER

Modeling surface energy fluxes using land surface temperatures and emissivities Objective: Highlight HyspIRI's multispectral TIR capability for rangeland science

Mapping Rangeland Degradation

From: Jeffrey E Herrick, Veronica C Lessard, Kenneth E Spaeth, Patrick L Shaver, Robert S Dayton, David A Pyke, Leonard Jolley, and J Jeffery Goebel. 2010. National ecosystem assessments supported by scientific and local knowledge. *Frontiers in Ecology and the Environment* **8**: 403–408. "Copyright by the Ecological Society of America"

ASTER Composite over Jornada 2001-2003

Dynamic Range of Remotely Sensed Vegetation Indices over Rangeland is small

Thermal Band Emissivities Could Help Monitor Vegetation Cover Regardless of Greenness

Siliceous Soil

Split-Window Region

Spectral Variation of Brightness Temperature
Strong soil signature
Affected by surface moisture
Vegetation masking of soil

Emissivity λ=8.2μm

Emissivity λ=8.6μm

Emissivity λ=9.1μm

Linear Emissivity Trend 26 ASTER scenes, 2001-2003 Drop of 3% over three years

R²

Emissivity Uncertainty Simulation

200 m extract

Emissivity Changes Appear to Correlate with Leaf Area Changes

Land Surface Temperature Validation of ASTER at Jornada, 2002

Emissivity Changes Observed by ASTER & MODIS

Multispectral TIR constrains atmospheric correction terms

1. Atmospheric profile at site uncertain

- 2. Errors in correction will exaggerate spectral emissivity contrasts
- 3. Can constrain errors:
 - 1. Check LSTs after correction.
 - Adjust atmospheric correction parameters using 'known' emissivity targets.

Transmissivity

Short Wavelength Emissivities with ASTER/MODIS Jornada 2003

MASTER Band 43 Emissivity Changes May 2001/2002/2003 6-12 m resolution

May 2001

May 2002

Land Surface Temperature Scaling over Jornada Rangeland

120 m

Scaling of Land Surface Temperatures Over Jornada Rangeland

Most of LST dynamic range lost ~50m

•LST contrast loss mainly over cooler surfaces

•HyspIRI resolution will discriminate land used changes, but not individual shrubs •Loss of range needs to be considered when modeling surface energy fluxes

NDVI is not a satisfactory estimator for Emissivity

Land Surface Emissivity: Seasonal Variability Examples from Rangeland & Cropland

Emissivity responds to harvest not

senescence

Winter Wheat Grazing Land 0.98 0.98 Emissivity (B29) Emissivity (B29) 0.94 0.94 0.90 0.90 0.0 0.2 0.4 0.6 0.0 0.2 0.4 0.6 NDVI NDVI

B29 Emissivity vs. NDVI

Surface Energy Balance Modeling: Incorporation of Emissivity Observations Rn – G = H + LE

Rn: reassign soil fraction to senescent vegetation fraction, revise light extinction, revise emissivities for canopy & soilG: affected by Rn_soil reductionH: Increases importance of aerodynamic resistance term raLE: Affected by changes in Rn, G, H

$$\begin{split} \mathrm{LE} &= \frac{\Delta}{\Delta + \gamma} \left[\mathrm{R_n} - \mathrm{G} \right] + \frac{\gamma}{\Delta + \gamma} \rho \mathrm{c_p} \left[\mathrm{e^{\star}} - \mathrm{e_a} \right] / \mathrm{r_a} \\ \mathrm{LE_C} &= \mathrm{f_g} \alpha \left[\frac{\Delta}{\Delta + \gamma} \right] \mathrm{R_{n,C}} \\ H &\cong H_{soil}(\Delta T) + H_{canopy}(PT) \\ \mathrm{LE_S} &= \mathrm{R_{n,S}} - \mathrm{G} - \rho \mathrm{c_p} \frac{\mathrm{T_s} - \mathrm{T_a}}{\mathrm{r_a} + \mathrm{r_s}} \\ \mathrm{LE} &= \mathrm{R_n} - \mathrm{G} - \rho \mathrm{c_p} \left[\frac{\Delta \mathrm{T}}{\mathrm{r_a}} \right] \end{split}$$

Penman (no TIR & no stress detection)

Priestley-Taylor

Evaporation (soil, residual)

ET Modeling with ASTER & MASTER at Jornada 2001-2003

Rangeland LE is small, but not zero Modeling with MASTER will help answer what can be resolved at 60 m

Irrigated Lands

Rangeland

Precipitation

Conclusions

Multispectral thermal infrared provides new information about rangeland vegetation cover
This information can be used to improve discrimination of senescent vegetation & modeling of surface energy fluxes

•MASTER 6-12 m results show impact of resolution on observations over rangeland, modeling will help answer consequence for water flux estimation.

 Implication for HyspIRI: Regional to Global scale data products should include time-continuous multispectral emissivities for detecting weeklyyearly+ changes.

Emissivities May Help Disaggregation ('Sharpening')

 $LST = k[b_0 + b_1 NDVI] + (1 - k)[c_0 + c_1 Emiss.]$

Comparing Sensor Emissivities: MODIS B29 vs. ASTER B11

All Jornada Sites - Oct 6, 2002

