

Integration of the PRI and fAPARchl Products for Carbon Monitoring

Yen-Ben Cheng Elizabeth M. Middleton Qingyuan Zhang

HyspIRI Science Symposium on Ecosystem Data Products NASA Goddard Space Flight Center, May 17 & 18, 2011

Objectives

- Two of the HyspIRI Products: PRI & fAPARchl
- GEP = LUE x PAR x fAPAR
- Photochemical Reflectance Index (PRI)
 - physiological condition: xanthophyll signal@531nm
 - correlation with LUE
- fAPARchl
 - enhanced fAPAR
 - derived from inversion radiative transfer modeling
- ?? Integration of PRI and fAPARchl: estimates of GEP directly from spectral observations

Previous work

Middleton et al., 2009. *Canadian Journal of Remote Sensing*.

GSFC HyspIRI Science Symposium

Zhang et al., 2009. Remote Sensing of

Environment.

- GEP = *f*(PRI, PAR, fAPARchl)
- Start at canopy level, then scale up to imagery
- What we did: weekly field campaign, OPE3 corn field of USDA BARC, summer of 2008

What we got: tower based CO₂ and PAR; spectral observations for corn canopies

Going Regional and Global

- Initiate the process: apply what we have learned in the field to a greater scale
- Simulate HyspIRI imagery from EO-1 Hyperion & demonstrate integration of PRI and fAPARchI
- Spatial resolution
 → take advantage of the fine spectral and spatial resolution of HyspIRI
- A question need to ask for any product whether to use it directly or input to models
- Changes in average values due to aggregation
- PRI & spatial resolution

Continue What We Have Started

USDA-ARS Hydrology & Remote Sensing Lab Beltsville, Maryland, USA

Optimizing Production Inputs for Economic and Environmental Enhancement (OPE3)

Comparisons of GEP from various algorithms

Comparisons of GEP from various algorithms

Going Regional and Global

- Initiate the process: apply what we have learned in the field to a greater scale
- Simulate HyspIRI imagery from EO-1 Hyperion & demonstrate integration of PRI and fAPARchl
- Spatial resolution
 → take advantage of the fine spectral and spatial resolution of HyspIRI
- A question need to ask for any product whether to use it directly or input to models
- Changes in average values due to aggregation
- PRI & spatial resolution

Changes in both the mean value and distribution histogram of PRI due to the increase of pixel size

Regional mean derived from 30-m PRI was 10% more compared to that derived from 960-m PRI

Comparisons of GEP at various spatial resolution

gCm⁻²d⁻¹

14.34

0

gCm⁻²d⁻¹

14.34

0

Comparisons of GEP at various spatial resolution

Summary

- Demonstration of using both the PRI and fAPARchl products for carbon monitoring and effects of spatial resolution
- Continue testing the robustness of the algorithm
- Confounding effects on PRI / PRI:LUE
- Uncertainty assessment in LUE and GEP estimates
- Various case study
- Use PRI and/or fAPARchl as model inputs
- Comparisons among various models (Cal/Val)

Thank you!!