Integration of the PRI and fAPARchl Products for Carbon Monitoring

Yen-Ben Cheng
Elizabeth M. Middleton
Qingyuan Zhang

HyspIRI Science Symposium on Ecosystem Data Products
NASA Goddard Space Flight Center, May 17 & 18, 2011
Objectives

• Two of the HyspIRI Products: PRI & fAPARchl
• GEP = LUE x PAR x fAPAR

• Photochemical Reflectance Index (PRI)
 – physiological condition: xanthophyll signal@531nm
 – correlation with LUE

• fAPARchl
 – enhanced fAPAR
 – derived from inversion radiative transfer modeling

• ?? Integration of PRI and fAPARchl: estimates of GEP directly from spectral observations
Previous work

5/18/2011
• GEP = \(f(PRI, PAR, fAPAR_{chl}) \)
• Start at canopy level, then scale up to imagery
• What we did: weekly field campaign, OPE3 corn field of USDA BARC, summer of 2008
• What we got: tower based CO\textsubscript{2} and PAR; spectral observations for corn canopies
Going Regional and Global

• Initiate the process: apply what we have learned in the field to a greater scale
• **Simulate HyspIRI imagery from EO-1 Hyperion & demonstrate integration of PRI and fAPARchl**

• Spatial resolution ➔ take advantage of the fine spectral and spatial resolution of HyspIRI
• A question need to ask for any product whether to use it directly or input to models
• Changes in average values due to aggregation
• **PRI & spatial resolution**
Continue What We Have Started
EO-1 Hyperion
True color

$f\text{APAR}_{\text{chl}}$

$f\text{APAR}_{\text{canopy}}$

DOY
108 172 190 195 231 277

Spring Summer Fall

GSFC HyspIRI Science Symposium
Comparisons of GEP from various algorithms

<table>
<thead>
<tr>
<th></th>
<th>60m Hyperion RGB</th>
<th>60m Hyperion PRI & fAPARchl</th>
<th>60m simulated MOD17</th>
<th>MOD17 1km GPP</th>
</tr>
</thead>
<tbody>
<tr>
<td>GEP (gCm^{-2}d^{-1})</td>
<td>0</td>
<td>14.34</td>
<td>0</td>
<td>4.85</td>
</tr>
</tbody>
</table>

5/18/2011 GSFC HyspIRI Science Symposium
Comparisons of GEP from various algorithms

<table>
<thead>
<tr>
<th>60m Hyperion RGB</th>
<th>60m Hyperion PRI & fAPARchl</th>
<th>60m simulated MOD17</th>
<th>MOD17 1km GPP</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>14.34</td>
<td>6.74</td>
<td>4.85</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

GEP (gC m\(^{-2}\) d\(^{-1}\))
Going Regional and Global

• Initiate the process: apply what we have learned in the field to a greater scale

• **Simulate HyspIRI imagery from EO-1 Hyperion & demonstrate integration of PRI and fAPARchl**

• Spatial resolution ➔ take advantage of the fine spectral and spatial resolution of HyspIRI

• A question need to ask for any product whether to use it directly or input to models

• Changes in average values due to aggregation

• **PRI & spatial resolution**
Hyperion imagery, August 18, 2008
Histogram and average of PRI derived @ various scales

5/18/2011
GSFC HyspIRI Science Symposium
Hyperion imagery, August 18, 2008
Histogram and average of PRI derived @ various scales
Hyperion imagery, August 18, 2008
Histogram and average of PRI derived @ various scales
Hyperion imagery, August 18, 2008
Histogram and average of PRI derived @ various scales
Hyperion imagery, August 18, 2008
Histogram and average of PRI derived @ various scales

5/18/2011 GSFC HyspIRI Science Symposium 16
Hyperion imagery, August 18, 2008
 Histogram and average of PRI derived @ various scales

Changes in both the mean value and distribution histogram of PRI due to the increase of pixel size

Regional mean derived from 30-m PRI was 10% more compared to that derived from 960-m PRI
Comparisons of GEP at various spatial resolution
Comparisons of GEP at various spatial resolution

Average GEP (gC m$^{-2}$ d$^{-1}$)

5/18/2011

GSFC HyspIRI Science Symposium
Summary

• Demonstration of using both the PRI and fAPARchl products for carbon monitoring and effects of spatial resolution

• Continue testing the robustness of the algorithm
• Confounding effects on PRI / PRI:LUE
• Uncertainty assessment in LUE and GEP estimates
• Various case study

• Use PRI and/or fAPARchl as model inputs
• Comparisons among various models (Cal/Val)
Thank you!!