

EnMAP and TES-GAP Status of the Missions and Relevance to HyspIRI

A. Müller, H. Kaufmann T. Stuffler, S. Hofer, F. Buongiorno and the EnMAP & TES-GAP Teams

EnMAP Overall Mission Goals

- An Inproving Spring trapeteral resolution observations of biogeochemical and geophysical variables
- → For Multipurpose Applications
- → To observe and develop a wide range of ecosystem parameters
- The Brook and coastal zones/inland waters
- → As Input to Ecosystem Models
- → To enable the retrieval of presently undetectable, quantitative
- ~ Jiadmosney strandenstanding by then desertangen Runnesses
- To provide high-quality calibrated data and data products to be used as inputs for improved modelling and understanding of biospheric/geospheric processes

Missionsparameter

- Sun-synchronous, 11:00
 LTDN LEO reference altitude 653km
- → 3 axis stabilized platform with OCS
- → mass 850 kg / power 550 W
 avg.
- 512 Gbit mass memory / 320
 Mbit/s X-band science data downlink
- → 4 day global accessibility (±30° off-nadir)
- → 4 day target revisit capability
- up to 50 data takes per day / total length 5000km

Entra de la companya de la comp

EnMAP Hyperspectral Imager

Sensor Parameter

schlanke Kontur - Leitfarbe

- Pushbroom type hyper spectral imager
- → Wavelength 420 2450 nm
- → 30m GSD, 30 km swath (nadir)
- → 228 spectral bands
- → VNIR 6.5 nm sampling
- → SWIR 10 nm sampling
- → SNR > 150 @ 2200nm (ref. radiance)
- \neg Polarization sensitivity < 5%
- \neg Smile and Keystone < 0.2 pix
- → Pointing knowledge 100m
- → Radiometric accuracy 5%
- → Radiometric stability 2.5%
- → Response Linearity 0.5%
- → Spectral accuracy 0.5nm / 1nm

Satellite Design

- → Total Weight: ca. 850 kg
- → Aver. Power: 450 W
- → 512 Gbit mass memory
- → 3 axis stabilized platform
- → Pointing Stability: 1,5 m / 4 ms
- → Pointing Knowledge: 100 m
- → ± 30° off nadir pointing for observation
- Hydrazine propulsion system for orbit maintenance & disposal
- 320 Mbit/s X-Band science data downlink
- \neg Lifetime in Orbit: > 5 years

Hyperspectral

Imager

Instrument Optik Unit Design

- Polished NiP coated Aluminum mirrors
- Monolithic Aluminum structure
- Quasi-isostatic mounting to platform
- Starcameras attached to IOU for pointing knowledge
- Redundant SWIR FPA due to cryocooler without flight heritage
- → Gravity release < 5µm opt. elements
 </p>
- → Eigenfreq. > 100 Hz
- → Active thermal stabilization to 21°C + 1K

Instrument Optik Design

EnMAP Summary

- EnMAP primarily is considered as an environmental research satellite focusing on process oriented land surface dynamics
- → PI: Charly Kaufmann, GFZ Potsdam
- → Phase C/D in work, CDR of GS completed
- → Launch scheduled for mid 2014
- → 30 km Swath, 30m spatial resolution, 5-10 nm spectral bandwidth
- → Level 2 Product: Ortho-rectified and atmospherically corrected data
- → Strong scientific user support planned: Toolbox, Spectral Archive
- → Open for international partnerships with respect to data utilization
- → Information: http://www.enmap.org

Temperature Emissivity Signatures for Geosphere and Pedosphere

Eyjafjallajökull, MODIS, 19 April 2010

Monitoring of Precursor Indicators

Characterisation of Soils

Largest pool of organic C on the earth's surface. 3x larger that atmospheric C

Reservoir of C, N, P, and S

Important role in C sequestration

pH buffering

Strong retention of AI and heavy metals

Retention of pesticides and other organic chemicals

Deutsches Zentrum für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

Map Information Needs

- → Mineral exploration requires detailed maps
- → Ore bearing horizon is peridotite
- → All rocks visibly dark but differing in mineralogical detail (type and abundance)

Terrane Characteristics

DLR

Frost heave, spatial continuity, lichen imparting color to bedrock Deutsches Zentrum für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

15

Mapping with SEBASS (4 meter data)

TES-GAP Science Objectives

- Provide high precission emissivity and temperature measurements of land surfaces
- ✓ Measure soils surface composition and monitor soil dynamics
 - → determine SOM, soil mineralogy, moisture, roughness
 - → monitor soil degradation and pedogenic processes
 - → improve understanding of soil-atmosphere interaction
- Measure volcanic thermal behaviour and gas emissions as precurser indicators to predict eruptions
 - → determine temperature of lava flows, craters and fumarol fields
 - → quantitatively measure volcanic emission gases
- ✓ Foster applications of thermal spectroscopy in other science areas
 - Urban heat island
 - Biomass burning
 - Heat stress in inland and coastal waters

TES-GAP History & way forward

- → ESA EEOM Call EE8 in 2009, Deadline for LoI: Dec 2009
- → LoI from DLR & KT (TERM) and INGV & SelexGalileo (MARTHA)
- → Decission on merge of both proposals in April 2010
- ✓ Submission of TES-GAP in June 2010
- → ESA decission on Phase A studies (up to three) in Nov 2010
- → ESA decission on implementation of one mission end of 2011
- → Launch in 2018

TES-GAP - Proposal Team

- → Andreas Müller, Dr. Tobias Storch, German Aerospace Center (DLR)
- Dr. Maria Fabrizia Buongiorno, Istituto Nazionale di Geofisica e Vulcanologia (INGV)
- → Dr. Timo Stuffler, Markus Plattner, Kayser-Threde GmbH (KT)
- Tiziano Mazzoni, SelexGalileo
- → Prof. Eyal Ben Dor, Tel Aviv University (TAU)
- → Prof. Benoit Rivard, University of Alberta (UA)
- ✓ Prof. Jose Sobrino, University of Valencia (UV)
- ✓ Ivan Pippi, Istituto di Fisica "Nello Carrara" (IFAC)
- → Dr. Martin Wooster, King's College London (KCL)
- Prof. Sergio Teggi, Prof. Sergio Pugnaghi, University of Modena (UM)
- → Dr. Stefania Amici, Dr. Stefano Corradini, Dr. Valerio Lombardo, Dr. C. Spinetti, INGV
- Dr. Simon Hook, Dr. Michael Abrams, Dr. Dave Pieri, NASA JPL

Proposed Mission Organisation

DLR für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

Thermal Signatures of Minerals

Rock forming Minerals

H. Kaufmann, GFZ

Instrument Requirements Simulations

Deutsches Zentrum für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

Spectral Coverage

Preliminary TES-GAP Instrumentation / Mission Requirements

- → MIR Radiometer Spectral and Radiometric Requirements
 - → Coverage: 3-5 µm
 - → No. of bands: ~12 , bandwith: ~150 nm
 - → NEΔT: 0.05 K @ 300K & 0.1 K @ 1000K
- → TIR Spectrometer Spectral and Radiometric Requirements

 - \neg No of bands: 30, bandwith: ~150 nm
 - → NEAT: 0.05 to 0.1 K @ 300K
- → Geometric Requirements
 - → Ground Sampling Distance: 60x60 m2
 - Swath width: 60-100 km
 - → Repeat Cycle: tbd
 - → Target Revisit: tbd (i.e. pointing)
 - ✓ Coverage: global access, regional coverage, focus on core test areas

TIR Instrument Design

MIR Instrument design

TES-GAP Bus & Orbit

- → MITA (Carlo Cavazzi)
- → 500 kg total mass
- → lifetime of 3 to 5 years
- communication downlink in S- and X-band
- → data rate 320 Mbit/s, X-Band
- → 400 W electrical power (EOL)
- → mass memory 512 Gbit

Orbit (identical to EnMAP)

- → sunsynchroneous
- → altitude of 640 km
- → inclination angle 98°
- → Equator crossing at 10:30 LTDN

Mission Schedule

Summary and Comparison to HyspIRI

	HyspIRI	EnMAP	TES-GAP
Specral Coverage	VSWIR/MIR/TIR	VSWIR	MIR/TIR
Spectral Bands	200+/1/7	200+	~12/30
Spatial Resolution	60 m2	30m2	60-90m2
Swath Width	150km/500km	30km	50-60km
Revisit Time	19 d	24d	~ 20 d
Coverage	Global	Regional	Regional
Purpose	Global Monitoring	Process Understanding	PU + Reginal Monitoring
Lifetime	3 years	5 years	5 years
Est. Launch Date	2021	2014	2018
Propability	-> HyspIRI Team	high	1:30

thank you for your attention!

Cost Estimate

ID	Mission Element	Costs [MEUR]	Comments
01	Satellite Bus	28	
02	Instrument Payload MIR/TIR	55	
03	Launcher	tbd	excluded
04	Ground Segment	12	operations and generic elements excluded
05	Margins	5	
Sum		100	

