

Baseline vs Minimum

Baseline	Minimum
380 to 2500 nm at ≤10 nm sampling at the specified signal-to-noise ratio and accuracy with <u>>95%</u> spectral/spatial uniformity at ≤60 m nadir spatial sampling with <20 day revisit to provide	380 to 2500 nm at ≤10 nm sampling at <u>>80%</u> of the specified signal-to-noise ratio and accuracy with <u>>90%</u> spectral/spatial uniformity at ≤60 m nadir spatial sampling with <20 day revisit to provide
>60% seasonal and >80% annual coverage of the terrestrial and shallow water regions of the Earth	> 50% seasonal and >70% annual coverage of the terrestrial and shallow water regions of the Earth
three years with a subset of measurements available near-real-time for designated science and applications.	two years.
8 spectral bands from the 3-5 micron and 8-12 micron regions of the spectrum at the specified noise-equivalent-delta-temperature and accuracy at ≤60 m nadir spatial sampling	8 spectral bands from the 3-5 micron and 8-12 micron regions of the spectrum at <u>>80%</u> the specified noise-equivalent-delta-temperature and accuracy at ≤60 m nadir spatial sampling with ≤5 day revisit
>60% Monthly, >70% seasonal and >85% annual coverage of the terrestrial and shallow water regions of the Earth	> 40% Monthly, > 60% seasonal and >70% annual coverage of the terrestrial and shallow water regions of the Earth

Note: We will keep you informed of any changes such as the change in the saturation limit of the MIR band to 1100K

HyspIRI

DRAFT PRELIMINARY

Level 1 Requirements and Mission Success Criteria

NASA Earth Science and Applications Decadal Survey

Robert O. Green, Simon Hook, Betsy Middleton, Stephen Ungar, Bob Knox, Woody Turner, John LaBrecque and the HyspIRI Team

Overview

Beginning in January 2007 a Mission Concept effort for HyspIRI Mission has been under way with involvement of NASA HQ, JPL, GSFC, and a broad Science Study Group and the 2008 workshop, 2009 workshop, 2010 symposium.

Beginning with the call of the NASA Earth Science and Applications Decadal Survey this team has worked to develop a end-to-end concept for implementation of the HyspIRI Mission.

Based on this effort and with input from SSG and the relevant communities a set of Level 1 Requirements and Success Criteria have been develop in accordance with the required NASA process.

In this presentation we are going to review key elements of the HyspIRI draft preliminary Level 1 Requirements and Success Criteria.

This is a required and enabling document for HyspIRI to proceed to the next step in the NASA Mission process.

Note: The HyspIRI Mission must remain appropriately aligned with the Decadal Survey.

HyspIRI Science Study Group

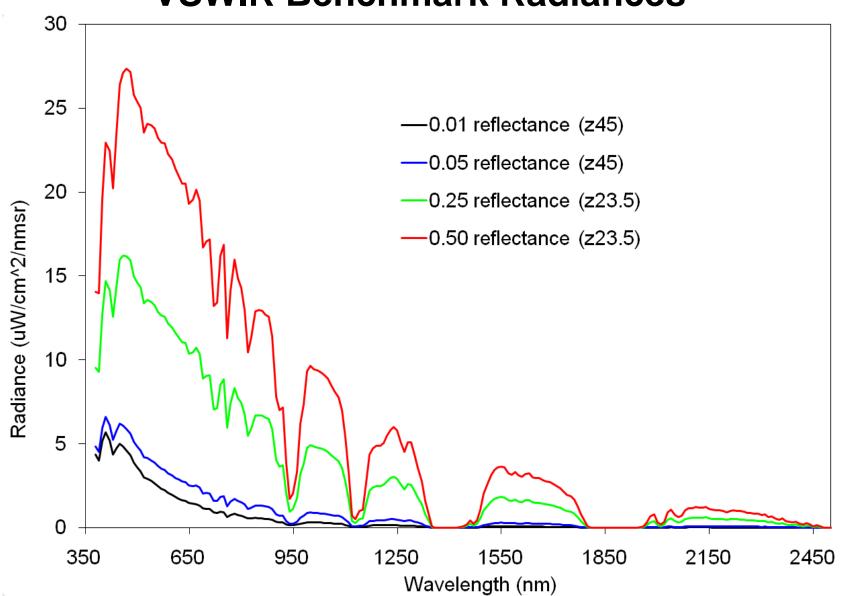
Mike Abrams	JPL	michael.j.abrams@jpl.nasa.gov	818-354-0937
Rick Allen	UID	rallen@kimberly.uidaho.edu	208-423-6601
Martha Anderson	USDA	Martha.Anderson@ars.usda.gov	301-504-6616
Greg Asner	Stanford	gpa@stanford.edu	650-462-1047
David Meyer	USGS EROS	dmeyer@usgs.gov	605-594-6046
Paul Bissett	FERI	pbissett@flenvironmental.org	813-866-3374 x102
Alex Chekalyuk	Lamont-Doh.	chekaluk@ldeo.columbia.edu	845-365-8552
James Crowley	USGS	jcrowley@usgs.gov	703-648-6356
Ivan Csiszar	UMD	icsiszar@hermes.geog.umd.edu	301-405-8696
Heidi Dierssen	U Conn.	heidi.dierssen@uconn.edu	860-405-9239
Friedmann Freund	Ames	friedemann.t.freund@nasa.gov	650 604-5183
John Gamon	UA	gamon@gmail.com	780-965-0345
Louis Giglio	UMD	louis_giglio@ssaihq.com	301 867-2030
Greg Glass	JHU	gglass@jhsph.edu	410-955-3708
Robert Green	JPL	rog@jpl.nasa.gov	818 354-9136
Simon Hook	JPL	simon.j.hook@jpl.nasa.gov	818-354-0974
James Irons	GSFC	James.R.Irons@nasa.gov	301-614-6657
Bob Knox	GSFC	Robert.G.Knox@nasa.gov	301-614-6656
John Mars	USGS	jmars@usgs.gov	703-648-6302
Betsy Middleton	GSFC	elizabeth.m.middleton@nasa.gov	301-614-6670
Peter Minnett	U. Miami	pminnett@rsmas.miami.edu	305-361-4104
Frank Muller Karger	U. MA Dart.	carib@marine.usf.edu	727-553-3335
Scott Ollinger	UNH	scott.ollinger@unh.edu	508 999 8193
Thomas Painter	U. of Utah	painter@geog.utah.edu	303.888.7119
Anupma Prakash	UAF	prakash@gi.alaska.edu	907-474-1897
Dale Quattrochi	MSFC	dale.quattrochi@nasa.gov	256-961-7887
Vince Realmuto	JPL	Vincent.J.Realmuto@jpl.nasa.gov	818-354-1824
Dar Roberts	UCSB	dar@geog.ucsb.edu	805-893-2276
Dave Siegel	UCSB	davey@icess.ucsb.edu	805-893-4547
Phil Townsend	U of Wisc.	ptownsend@wisc.edu	608-262-1669
Kevin Turpie	GSFC	kevin.r.turpie@nasa.gov	301-286-9996
Steve Ungar	GSFC	stephen.g.ungar@nasa.gov	301-614-6674
Susan Ustin	UC Davis	susan@cstars.ucdavis.edu	530-752-0621
Rob Wright	UHI	wright@higp.hawaii.edu	808-956 9194

Contents

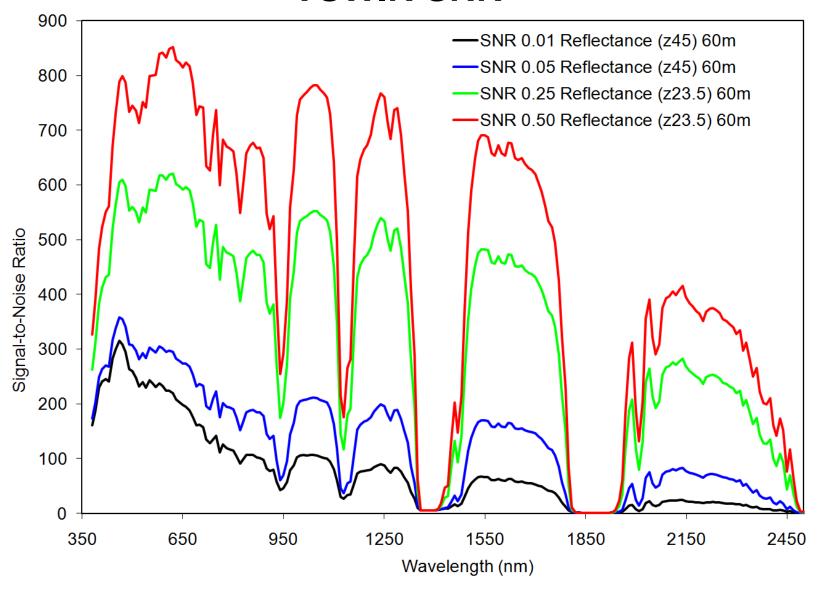
1.	Scope	4
2.	Science Definition	4
	2.1. Mission Imperative 2.2. Science Objectives 2.3. Implementation Approach	4
3.	Project Definition	.5
	3.1 Roles and Responsibilities 3.2 Project Category. 3.3 Governing Program Management Council 3.4 Payload Risk Classification 3.5 Termination Review	.6 .6
4.	Performance Requirements	
	4.1 Science Requirements 4.2 Data Product Requirements 4.3 Observatory and Mission Operations Requirements 4.4 Launch Requirements	.8 .8 .8
5.	4.5 Science Measurement Validation Requirements Program Requirements	.8
	5.1 Cost Requirements 5.2 Cost Management and Scope Reduction 5.3 Schedule Requirements 5.4 External Agreement Definition 5.5 Safety Requirements	9 9 9
6.	Education and Public Engagement Requirements	9
7.	Mission Success Criteria	9
7.	Concurrences	0
8.	Approvals1	0

4. Performance Requirements

4.1 Science Requirements


The science objectives in Section 2.2 can be achieved by either the baseline or minimum science mission requirements listed here, but the baseline mission provides substantially more value to NASA and the Earth Science Community.

- 4.1.1 Requirement: Baseline Science Mission
- a) To address the Decadal Survey and community identified science and application questions related to terrestrial and coastal ocean ecosystem composition, function, and change as well as surface composition (DS113-115), the baseline science mission shall provide global mapping measurements of the surface reflectance or remote sensing reflectance for shallow water regions across the solar reflected spectrum from 380 to 2500 nm at ≤10 nm sampling at the specified signal-to-noise ratio and accuracy with >95% spectral/spatial uniformity at ≤60 m nadir spatial sampling with <20 day revisit to provide >60% seasonal and >80% annual coverage of the terrestrial and shallow water regions of the Earth for at least three years with a subset of measurements available near-real-time for designated science and applications.


Level 1 Requirements and Mission Success Criteria VSWIR Benchmark Radiances

Level 1 Requirements and Mission Success Criteria (VSWIR Performance)

wavelength		01 reflectance 45)	0.05 reflectance (z45)	0.25 reflectance (z23.5)	0.50 reflectance (z23.5)	wavelength	SNR 0.01 Reflectance (z45) 60m	SNR 0.05 Reflectance (z45) 60m	SNR 0.25 Reflectance (z23.5) 60m	SNR 0.50 Reflectance (z23.5) 60m	wavelength	Digitization Radiance (uW/ cm^2/nm/sr)
	380	4.34E+00	4.84E+00	9.54E+00		380	1.61E+02					
3	390	3.99E+00	4.51E+00	9.28E+00	1.40E+01	390	1.87E+02	2.02E+02	3.09E+02	3.89E+02	390	1.22E-02
4	400	5.17E+00	5.93E+00	1.27E+01	1.95E+01	400	2.29E+02	2.49E+02	3.83E+02	4.83E+02	400	1.14E-02
4	410	5.69E+00	6.61E+00	1.47E+01	2.29E+01	410	2.41E+02	2.63E+02	4.12E+02	5.23E+02	410	1.15E-02
	120	5.20E+00	6.14E+00	1.42E+01	2.25E+01	420					420	
	430	4.37E+00	5.24E+00	1.26E+01	2.02E+01	430						
	140	4.74E+00	5.77E+00	1.44E+01	2.34E+01	440						
	450	5.01E+00	6.20E+00	1.60E+01	2.64E+01	450						
	460	4.84E+00	6.09E+00	1.62E+01	2.71E+01	460						
	470	4.60E+00	5.88E+00	1.62E+01	2.73E+01	470					470	
	480	4.31E+00	5.61E+00	1.59E+01	2.72E+01	480						
	190	3.87E+00	5.12E+00	1.50E+01	2.58E+01	490						
	500	3.61E+00	4.86E+00	1.46E+01	2.54E+01	500						
	510 520	3.38E+00 3.02E+00	4.62E+00 4.20E+00	1.43E+01 1.34E+01	2.50E+01 2.35E+01	510 520						
	530	2.94E+00	4.16E+00	1.36E+01	2.41E+01	530					530	
	540	2.79E+00	4.02E+00	1.34E+01	2.41E+01 2.40E+01	540						
	550	2.65E+00	3.87E+00	1.33E+01	2.38E+01	550					550	
	560	2.47E+00	3.67E+00	1.29E+01	2.32E+01	560						
	570	2.33E+00	3.53E+00	1.27E+01	2.29E+01	570						
	580	2.23E+00	3.43E+00	1.26E+01	2.29E+01	580					580	
	590	2.08E+00	3.25E+00	1.22E+01	2.22E+01	590						
	300	1.96E+00	3.13E+00	1.19E+01	2.19E+01	600						
	310	1.84E+00	2.99E+00	1.16E+01	2.14E+01	610						
	200	4.745.00	0.075 - 0.0	4.400.04	2 005 - 04	000	2.405.02		0.045.00	0.505.00	000	
22	200	1.72E-02	7.31E-02	4.71E-01	9.37E-01	2200	1.81E+01	6.44E+01	2.36E+02	3.51E+02	2200	9.85E-04
22	210	1.87E-02	8.00E-02	5.10E-01	1.02E+00	2210	1.96E+01	6.96E+01	2.49E+02	3.68E+02	2210	9.79E-04
22	220	1.89E-02	8.11E-02	5.16E-01	1.03E+00	2220	2.01E+01	7.12E+01	2.52E+02	3.74E+02	2220	9.65E-04
22	230	1.88E-02	8.05E-02	5.12E-01	1.02E+00	2230	2.02E+01	7.15E+01	2.53E+02	3.75E+02	2230	9.52E-04
22	240	1.82E-02	7.79E-02	4.97E-01	9.90E-01	2240	1.98E+01	7.05E+01	2.51E+02	3.72E+02	2240	9.39E-04
22	250	1.74E-02	7.47E-02	4.78E-01	9.52E-01	2250	1.92E+01	6.87E+01	2.47E+02	3.66E+02	2250	
	260	1.64E-02	7.03E-02	4.52E-01	9.00E-01	2260	1.82E+01		2.39E+02			
	270	1.60E-02	6.89E-02	4.43E-01	8.83E-01	2270		6.45E+01	2.36E+02			
	280	1.55E-02	6.67E-02	4.30E-01	8.56E-01	2280	1.74E+01		2.32E+02			
	290	1.50E-02	6.43E-02	4.15E-01	8.28E-01	2290		6.14E+01	2.28E+02		2290	
	300	1.39E-02	5.94E-02	3.87E-01	7.70E-01	2300		5.79E+01	2.19E+02			
	310	1.44E-02	6.17E-02	3.98E-01	7.94E-01	2310		5.99E+01	2.24E+02			
	320	1.16E-02	4.92E-02	3.23E-01	6.43E-01	2320		4.98E+01	1.97E+02		2320	
	330	1.26E-02	5.39E-02	3.51E-01	6.99E-01	2330		5.37E+01	2.08E+02			
	340 350	1.04E-02 8.65E-03	4.39E-02	2.90E-01	5.78E-01 4.82E-01	2340 2350		4.50E+01 3.77E+01	1.84E+02 1.63E+02			
	360	9.78E-03	3.61E-02 4.11E-02	2.42E-01 2.72E-01	4.82E-01 5.41E-01	2350		3.7/E+01 4.19E+01	1.63E+02 1.74E+02			
	370	7.28E-03	3.01E-02	2.72E-01 2.02E-01	4.03E-01	2370			1.74E+02 1.43E+02			
	380	6.32E-03	2.56E-02	1.74E-01	4.03E-01 3.46E-01	2380	7.26E+00		1.43E+02 1.28E+02		2370	
	390	6.21E-03	2.50E-02	1.74E-01	3.40E-01	2390			1.27E+02			
	100	6.71E-03	2.72E-02	1.85E-01	3.67E-01	2400			1.35E+02		2400	
	110	4.50E-03	1.74E-02	1.20E-01	2.39E-01	2410			9.96E+01	1.61E+02	2410	
	120	3.75E-03	1.41E-02	9.89E-02	1.96E-01	2420			8.65E+01	1.42E+02	2420	
	430	4.95E-03	1.93E-02	1.34E-01	2.66E-01	2430			1.09E+02			
	140	4.13E-03	1.58E-02	1.10E-01	2.18E-01	2440			9.37E+01	1.52E+02	2440	
	450	1.85E-03	6.03E-03	4.28E-02		2450				7.65E+01	2450	
	460	3.00E-03	1.06E-02	7.60E-02		2460			6.98E+01	1.17E+02		
	470	1.58E-03	4.68E-03	3.39E-02		2470				6.21E+01	2470	
24	480	7.80E-04	1.65E-03	1.07E-02	2.08E-02	2480	8.99E-01	1.89E+00		2.21E+01	2480	
24	190	4.00E-04	4.60E-04	1.39E-03	2.34E-03	2490	4.56E-01	5.24E-01	1.58E+00		2490	
25	500	4.30E-04	5.10E-04	1.68E-03	2.90E-03	2500	4.80E-01	5.70E-01	1.87E+00	3.21E+00	2500	9.88E-04

b) To address the Decadal Survey and community-identified science and application questions related to volcanoes, wild fires, water usage, urbanization and surface composition (DS113-115), the baseline science mission shall provide global mapping measurements of the surface radiance, temperature and emissivity with 8 spectral bands from the 3-5 micron and 8-12 micron regions of the spectrum at the specified noise-equivalent-delta-temperature and accuracy at ≤60 m nadir spatial sampling with ≤5 day revisit to provide >60% Monthly, >70% seasonal and >85% annual coverage of the terrestrial and shallow water regions of the Earth for at least three years with a subset of measurements available near-real-time for designated science and applications.

Specified NEdT

			Min Nominal	Max Nominai	NEGI at Min	NECT at Max	
	Wavelength	Spectral	Radiance and	Radiance and	nominal	Nominal	
		Bandwidth	Temperature	Temperature	Temperature	Temperature	NEdT at 300 K
	(microns)	(microns)	(W/m^2/micron/sr)	(W/m^2/micron/sr)	Kelvin	Kelvin	Kelvin
Band 1	3.98	0.08	14 (400 K)	9600 (1400 K)	1	0.12	11.2
Band 2	7.35	0.32	0.34 (200 K)	110 (500 K)	2.8	0.22	0.28
Band 3	8.28	0.34	0.45 (200 K)	100 (500 K)	2	0.22	0.24
Band 4	8.63	0.35	0.57 (200 K)	94 (560 K)	1.6	0.24	0.24
Band 5	9.07	0.36	0.68 (200 K)	86 (500 K)	1.2	0.24	0.22
Band 6	10.53	0.54	0.89 (200 K)	71 (500 K)	0.64	0.22	0.16
Band 7	11.33	0.54	1.1 (200 K)	58 (500 K)	0.56	0.26	0.16
Band 8	12.05	0.52	1.2 (200 K)	48 (500 K)	0.52	0.3	0.18

Digitization @ min radiance	Digitization @ max radiance	Digitization @ 300 K		
(W/m^2/micron/sr)	(W/m^2/micron/sr)	(W/m^2/micron/sr)		
4.0e-2 (0.12 K)	4.0e-2 (0.01 K)	5.0e-2 (1.4 K)		
5.6e-3 (0.30 K)	5.6e-3 (0.009 K)	5.6e-3 (0.03 K)		
4.8e-3 (0.23 K)	4.8e-3 (0.009 K)	4.8e-3 (0.03 K)		
4.5e-3 (0.19 K)	4.5e-3 (0.009 K)	4.5e-3 (0.03 K)		
4.1e-3 (0.15 K)	4.1e-3 (0.010 K)	4.1e-3 (0.03 K)		
2.5e-3 (0.08 K)	2.5e-3 (0.008 K)	2.5e-3 (0.02 K)		
2.2e-3 (0.07 K)	2.2e-3 (0.010 K)	2.2e-3 (0.02 K)		
2.1e-3 (0.06 K)	2.1e-3 (0.012 K)	2.1e-3 (0.02 K)		

Notes

Center wavelength is the average of the max and min wavelengths at the FWHM Spectral bandwidth is the FWHM

Minimum nominal radiance is 200K except for 4 um band where it is 400K Maximum nominal radiance is 500K except for 4 um band where it is 1400K

c) To address Decadal Survey and community-identified science and application questions (DS113-115), requiring combined reflectance, emissivity and temperature measurements, the baseline mission shall provide combined global mapping data sets.

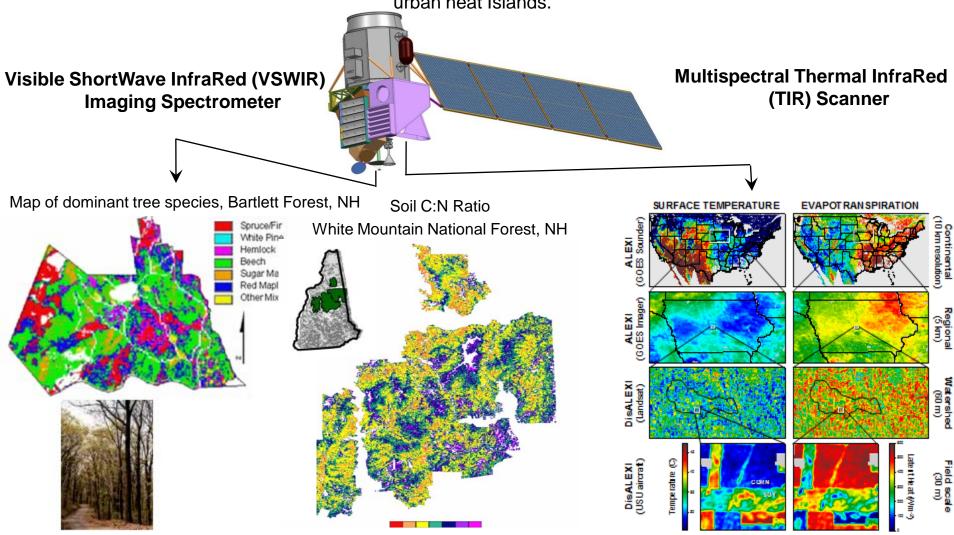
A termination review will be called if these requirements cannot be met

4.1.2 Requirement: Minimum Science Mission

a) To address the Decadal Survey and community identified science and application questions related to terrestrial and coastal ocean ecosystem composition, function, and change as well as surface composition (DS113-115), the baseline science mission shall provide global global mapping measurements of the surface reflectance or remote sensing reflectance for shallow water regions across the solar reflected spectrum from 380 to 2500 nm at ≤10 nm sampling at >80% of the specified signal-to-noise ratio and accuracy with > 90% spectral/spatial uniformity at ≤60 m nadir spatial sampling with <20 day revisit to provide > 50% seasonal and >70% annual coverage of the terrestrial and shallow water regions of the Earth for at least two years.

- b) To address the Decadal Survey and community identified science and application questions related to volcanoes, wild fires, water usage, urbanization and surface composition (DS113-115), the baseline science mission shall provide global mapping measurements of the surface temperature as well as emissivity and surface radiance in 8 spectral bands from the 3-5 micron and 8-12 micron regions of the spectrum at >80% the specified noise-equivalent-delta-temperature and accuracy at ≤60 m nadir spatial sampling with ≤5 day revisit to provide > 40% Monthly, > 60% seasonal and >70% annual coverage of the terrestrial and shallow water regions of the Earth for at least two years.
- c) To address Decadal Survey and community identified science and application questions requiring combined reflectance, emissivity and temperature measurements, the threshold mission shall provide combined global mapping data sets.

Summary


Please keep these Level 1 Requirements and Success Criteria in mind as we proceed through the workshop.

We will review these Level 1 Requirements and Success Criteria at the end of the workshop.

Note: The HyspIRI Mission must remain appropriately aligned with the Decadal Survey.

NRC Decadal Survey - HyspIRI

Global vegetation species-type and physiological condition, including agricultural lands, for biosphere feedback and land-atmosphere interactions; Spectroscopically derived terrestrial land cover composition/albedo including snow, ice, dust climate interaction; Fire: fuel, occurrence, intensity and recovery globally, as well as volcano emissions; Fine spatial & temporal scale measures of surface temperature and energy balance, including urban heat Islands.

