MODTRAN[®]5.2 Radiative Transfer Model and Applications to HyspIRI

A. Berk, P.K. Acharya, S.M. Adler-Golden, L.S. Bernstein, M.J. Fox, R.G. Kennett, D.C. Robertson and R. Taylor Spectral Sciences, Inc. (SSI), Burlington, MA modtran@spectral.com (www.spectral.com)

R.W. McMullen Boston College, Chestnut Hill, MA

2010 HyspIRI Science Workshop Pasadena, CA 24-26 August 2010

MODTRAN computer software is a registered trademark owned by the United States Government as represented by the Secretary of the Air Force.

LEAD | DISCOVER | DEVELOP | DELIVER

Acknowledgements

- Contract
 - Air Force Research Laboratory BAA
 - Development and Validation of Tools for Signature Exploitation Concepts

Sandy Nierman

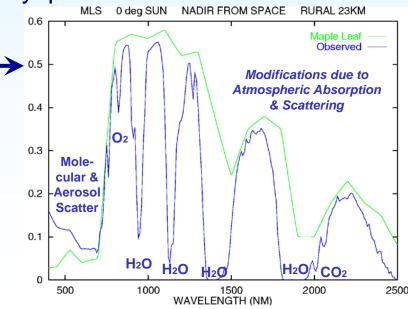
- Department of Energy (NA-22) Phase II SBIR
 - Full Spectral Signature Simulation Models for Chemical Releases
 - Victoria Franques
 - Spectral Sciences, Inc. Phase II SBIR
- Technical
 - Vincent J. Realmuto
 Jet Propulsion Laboratory

Presentation Outline

MODTRAN Overview

A Localized Chemical Cloud Option

MODTRAN5 - General Description -


16...

• Overview

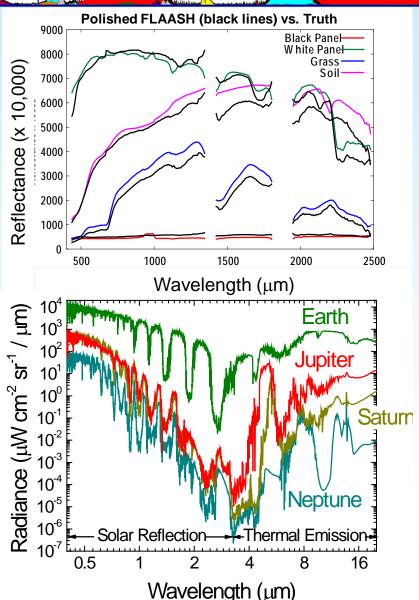
- 0.2 cm⁻¹ IR/Vis/UV Transm., Rad. & Fluxes from 0.1 cm⁻¹ Band Model WAVELENGTH (um)
- Stratified (1D) Molecular / Aerosol / Cloud Atmosphere
 - 2-Stream and DISORT Solar and Thermal Scattering
 - Spherical Refractive Geometry
- Many Applications Pertinent to HyspIRI
 - Sensor Design

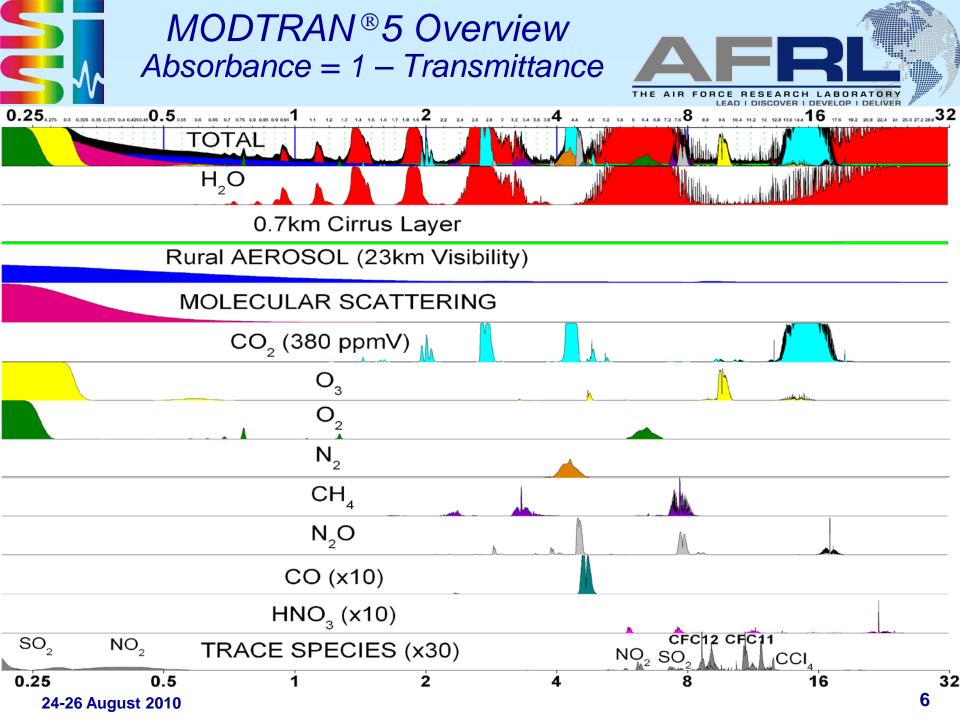
TOTAL

- Atmospheric Correction —
- Measurement / Data Analyses
- Scene Simulation
- Algorithm Development
- Today's focus:
 - Localized chemical clouds

4.4 4.8 5.2 5.6 6 6.4 6.8 7.2 7.

Sample MODTRAN Applications

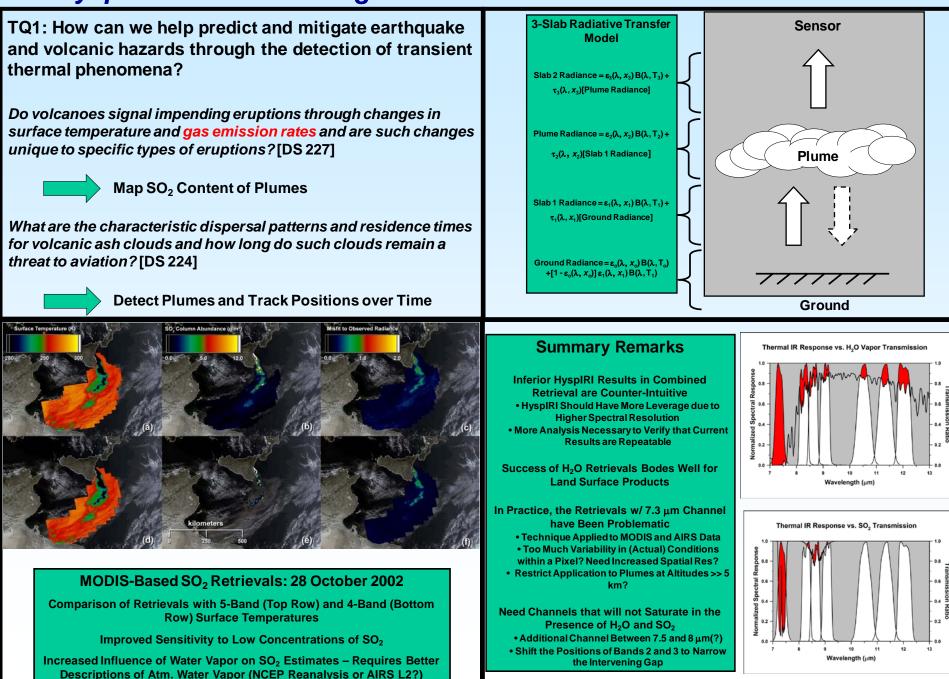

• FLAASH: Fast Line-of-sight Atmospheric Analysis of Spectral Hypercubes


- MODTRAN-based atmospheric correction
- SSI is lead developer with AFRL, NGA, NASA and SITAC collaboration & support
- Retrieves scene visibility and pixel water vapor using 2-band methods
- Compensates for atmospheric scattering (including adjacency effect) and absorption
- Includes automated wavelength calibration, spectral polishing

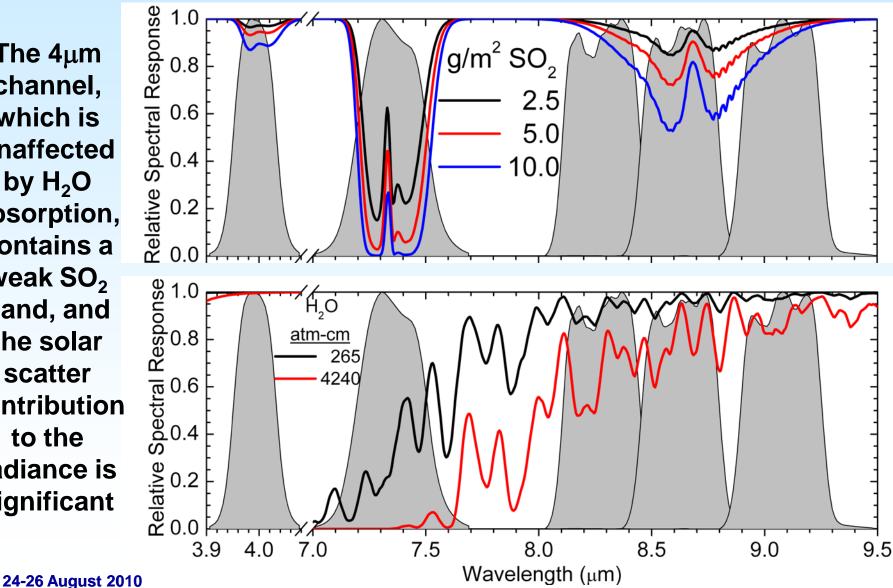
• PLANETS: PLANETary Spectroscopy

- SSI planetary radiation transfer algorithm based on MODTRAN5 band model
- Validated against Jupiter, Saturn, Neptune and exoplanet spectra
 - Microwave through UV
 - Extended temperature range (5- 600K)
 - Planetary aerosol models
 - H₂-H₂, H₂-He, H₂-CH₄ and CH₄-CH₄ collision induced continua (CIA)

24-26 August 2010



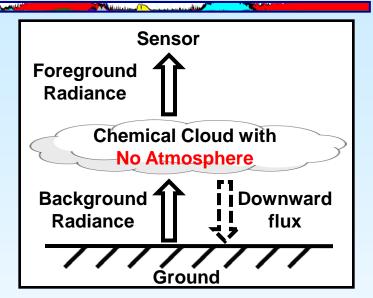
What's New - Selected Upgrades -

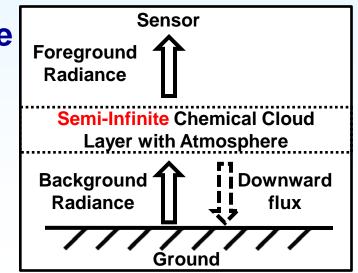

	MODTRAN®4	MODTRAN [®] 5.2.0.0 / 5.2.1.0
Band Model		
Spectral Resolutions	1.0, 5.0, 15.0 cm ⁻¹	+ 0.1 cm ⁻¹
Voigt Transmittance	Rogers-Williams interpolation	Exact expansion
HITRAN Data	Circa 2003	2008 with 2009 H ₂ O Update
Constituents	First 12 HITRAN molecules	39 HITRAN2008 molecules + Auxiliary Species Option
Inputs / Outputs		
Profile Scaling Input	CO ₂ , H ₂ O, O ₃	All built-in molecular profiles
Spectral Data	Direct Transmittance, Flux, (Ir)Radiance, Cooling Rates	+ Diffuse Transmittances, Spherical Albedo
Spectral Channel (chn) File	Frequency, Wavelength, Transmittance, (Ir)Radiance	+ Component Transmittances, Component (Ir)Radiances, Brightness Temperature, Surface Directional Emissivity, Top-Of-Atmosphere Solar Irradiance
General		
Configuration Control	No	SVN w/ Configuration Control Board
24-26 August 2010		7

HyspIRI Remote Sensing of Volcanic Plumes - Vincent J. Realmuto

HyspIRI Channels with SO₂ Absorption

The 4µm channel, which is unaffected by H₂O absorption, contains a weak SO₂ band, and the solar scatter contribution to the radiance is significant


Modeling Chemical Clouds with MODTRAN - Traditional Approaches -


1. Model chemical cloud externally

- MODTRAN cloud-free radiances
- Offline chemical cloud transmittances and source radiances
- Neglect finite cloud thickness, i.e., that the cloud and atmosphere actually coexist
- Sufficiently accurate for many applications

2. Embed cloud layer into atmosphere

- Cumbersome to implement
- Chemical cloud modeled as semi-infinite
 - Adversely affects flux and scattered radiance calculations
- Transition region temperature gradients can cause failure of spherical refraction

Modeling Chemical Clouds using MODTRAN - New Local Cloud Approach -

3. Introduce a MODTRAN "*local*" chemical cloud option

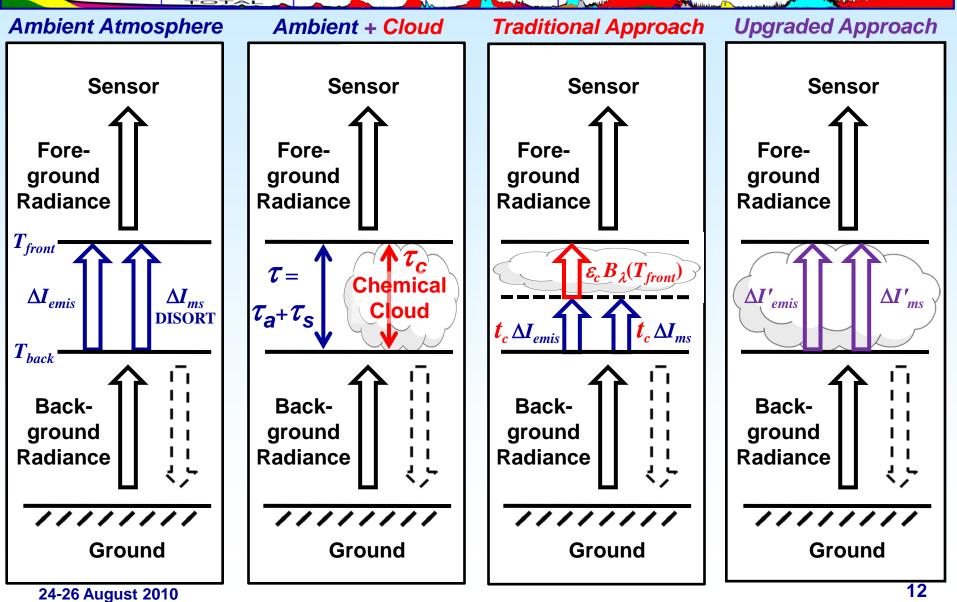
- Band model data for 100's of molecules
- User-friendly cloud specification
- Line-of-sight (LOS) & solar geometries computed with cloud-free atmosphere to eliminate refractive path failures
- Radiative Transfer
 - Tailored treatment of chemical cloud single scatter solar radiation
 - DISORT diffuse (scattered) radiance field determined from ambient atmosphere
 - Chemical cloud absorption included in LOS scattered, ΔI'_{ms}, and emitted, ΔI'_{emis}, segment radiance calculations

and Background Radiance

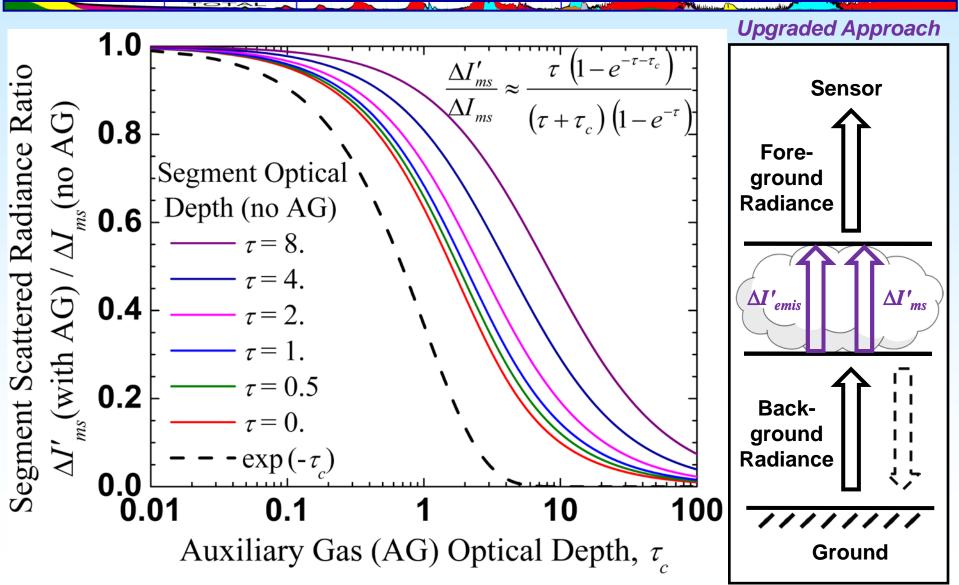
Foreground

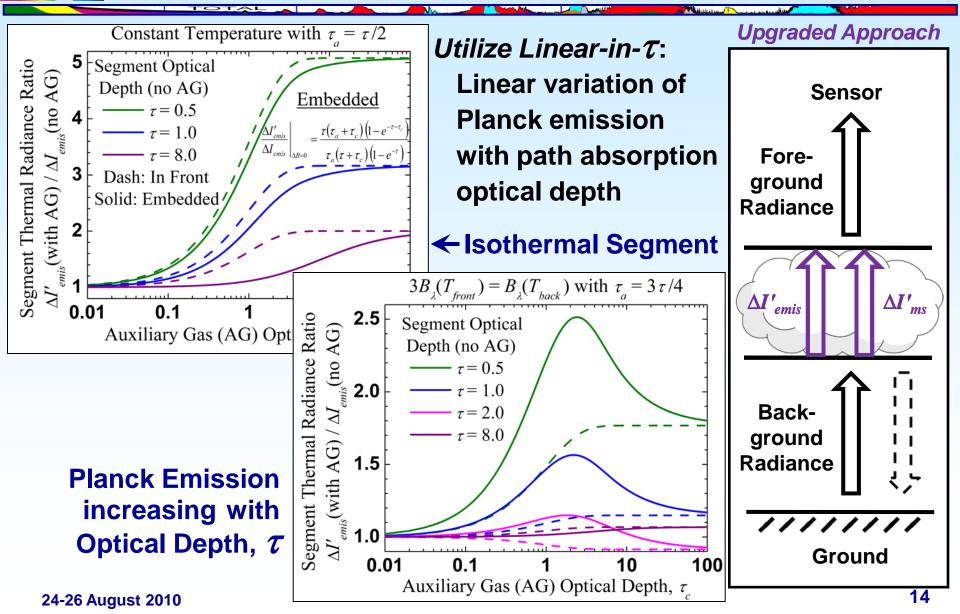
Radiance

Sensor


Local Chemical

Cloud + Atmosphere

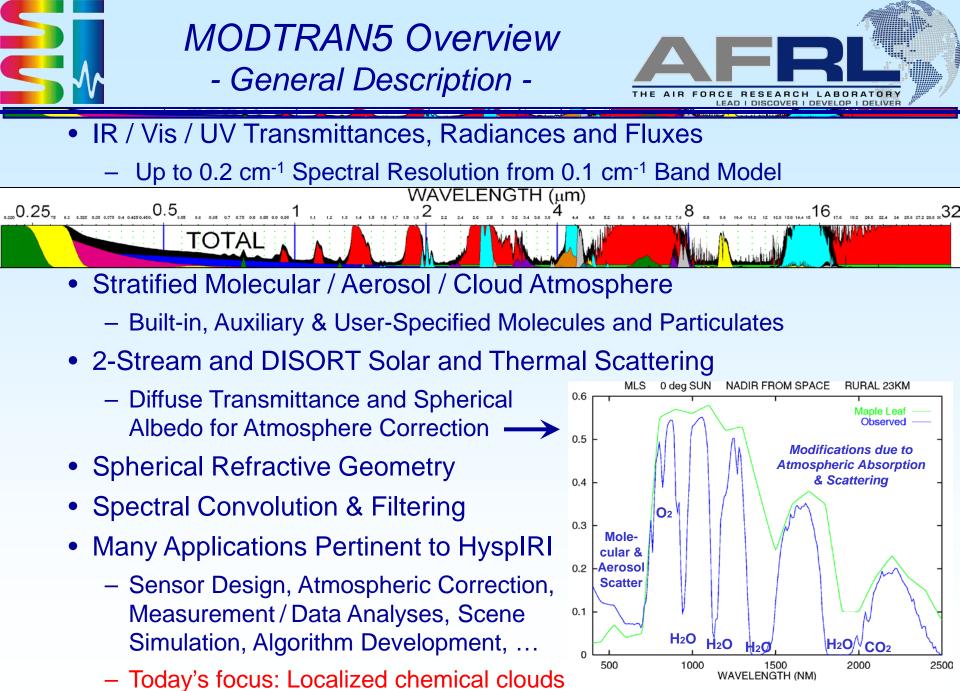

Output cloud-free, cloud + atmosphere & contrast spectral signatures


Single Layer Cloud Illustrations

Chemical Cloud Effect on Segment Scattered Radiance

Chemical Cloud Effect on Segment Emitted Radiance

- MODTRAN[®]5.2 has been available since June 2009
 - The model provides major enhancements over MODTRAN4
 - Can serve as an important tool for NASA and HyspIRI program
- MODTRAN is designed for broad range of applications
 - Code developers (SSI / AFRL) provide support as needed
 - Presentation focused on modeling of local chemical cloud
 - New option includes radiative coupling of atmosphere + cloud
 - Being developed for DOE
 - Work in progress: MODTRAN upgrade will be complete by 30sep2010
 - Designed to provide user-friendly inputs, an extensive chemical database, and state-of-the-art radiative transfer
 - Year 2 will focus on verification (MCScene and DIRSIG 3D modeling) and validation (measurement comparisons)


MODTRAN5 Distribution

- MODTRAN[®]5.2 is available for license at www.modtran.org
 - Developed, maintained and validated by SSI and AFRL
 - Distributed for SSI by Ontar Corporation
 - Government Use 'price' covers code distribution, maintenance and limited customer support costs
- An End User License Agreement (EULA) is required
 - States license terms of use, limits on re-distribution (3 users at a single site)
 - A single copy EULA can be accepted electronically during online purchase
 - Many organization legal departments require review and minor modifications
- Customized license agreements can be developed with SSI for
 - Site licenses (>7 user group at a single location),
 - Enterprise/embedded code licenses,
 - Contractor operated Government facilities licenses,
 - University and State government agency licenses,
 - Educational classroom use licenses,
 - Etc.

OTAL

Back ups

24-26 August 2010

What's New

Nh

the second second

TOTAL

	MODTRAN [®] 4	MODTRAN [®] 5.2.0.0 / 5.2.1.0
Band Model		
Spectral Resolutions	1.0, 5.0, 15.0 cm ⁻¹	+ 0.1 cm ⁻¹
Voigt Transmittance	Rogers-Williams interpolation	Exact expansion
Line Tail Model	Constant within spectral bin	Spectra fit to Padé Approximants
Line Center Model	One (S/d, 1/d) pair	or Two (S/d, 1/d) pairs
HITRAN Data	Circa 2003	2008 with 2009 H ₂ O Update
Constituents	First 12 HITRAN molecules	39 HITRAN2008 molecules + Auxiliary Species Option
Temperature Range	180K to 305K	180K to 330K
Correlated-k Algorithm		
Number of k's	33 (slow) or 17 (medium)	w/ Adaptive Reduction to 4 or 1
Convergence	Rare Failures	No Failures (to date)
DISORT Scattering		
Max Streams No.	16	32 or Increase Parameter MI
Solar Zenith	Most Angles < 90°	Any Angles < 90°

What's New

Nh

Minte Mar

TOTAL

. .

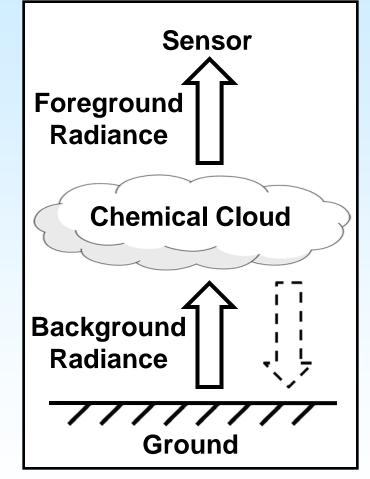
	MODTRAN [®] 4	MODTRAN [®] 5.2.0.0 / 5.2.1.0
Inputs		
Temperature Profile	Model Atmosphere, User Defined	or Model Atm. Perturbation
Water Profile	Model Atm. Density, User Defined	or Model Atm. Relative Humidity
Profile Scaling	CO ₂ , H ₂ O, O ₃	All built-in molecular profiles
Outputs		
Format	ASCII	or Binary
Spectral Data	Direct Transmittance, Flux, (Ir)Radiance, Cooling Rates	+ Diffuse Transmittances, Spherical Albedo
Radiance Modes	Thermal only, Thermal and Solar	+ Solar Only
Primary (tp6) Output File	General Information, Spectral Data, and In-Band Cooling Rates	or General Information Only or File Not Generated
Spectral Data (tp7,7sc) Files	Frequency, Wavelength, Component Transmittances, Component (Ir)Radiance	+ Brightness Temperature, Surface Directional Emissivity, Top-Of-Atmosphere Solar Irradiance
Spectral Channel (chn) File	Frequency, Wavelength, Transmittance, (Ir)Radiance	+ Component Transmittances, Component (Ir)Radiances, Brightness Temperature, Surface Directional Emissivity, Top-Of-Atmosphere Solar Irradiance
24-26 August 2010		20

What's New

Nh

TOTAL

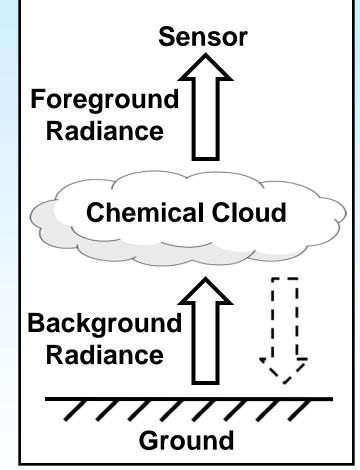
. .



	MODTRAN [®] 4	MODTRAN [®] 5.2.0.0 / 5.2.1.0
Optical Data		
Molecular Cross-Sections	13 CFC species	<pre>+ O₂O₂ Visible Absorbance + Auxiliary Species Option</pre>
User Defined Aerosols	Spectral Tables (no data checking)	Spectral Tables (with data checking) or Angstrom Law Inputs
Cloud	Built in Model Clouds	+ Mie Water/Ice Data Table
Surface Reflectance	Spectral Albedo, Spectral BRDF	w/ Surface liquid water
Geometry		
Refraction	Based on Band Central Frequency	or User-Defined Frequency
General		
Configuration Control	No	SVN w/ Configuration Control Board
Multiple Runs	Repeat Run from Single Input File	+ Multiple Input File Capability
Test Cases	27 sample inputs	58 sample inputs
Bug Fixes (See Readme)		

Modeling Chemical Clouds using MODTRAN

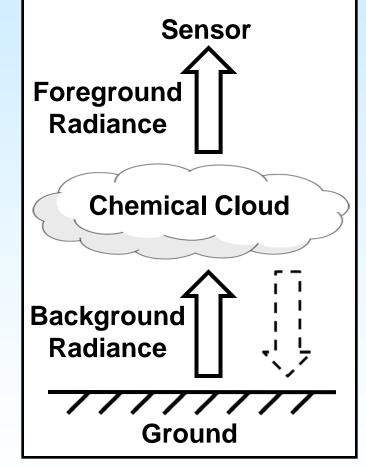
1. Model chemical cloud externally


- Cumbersome and Labor Intensive
 - Run MODTRAN to compute foreground +
 background and foreground radiances
 - Compute chemical cloud transmittance and source radiance offline
 - Spectrally combine components
- Neglects mixing of chemical cloud and atmosphere
 - Approximate treatment of radiative spectral correlations
 - Approximate treatment of emission and scattering radiance components
- Sufficiently Accurate for many applications

Modeling Chemical Clouds using MODTRAN

2. Embed chemical cloud stratified layers into atmosphere

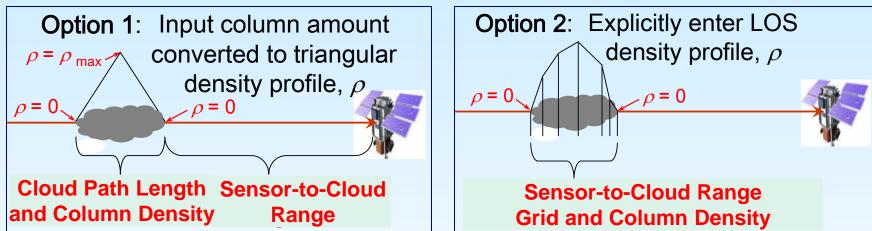
- Cumbersome to implement
 - Relaying often necessary for each LOS
 - Difficult to scale column densities
- Chemical cloud modeled as semi-infinite
 - Unintended perturbation of scattered radiance calculations
 - Unintended perturbation of vertical flux calculations
- Large vertical temperature gradients can arise within the chemical cloud to ambient atmosphere transition regions
 - Spherical refraction geometry algorithm can fail!

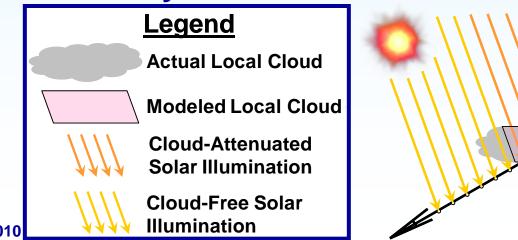


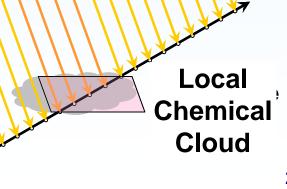
Modeling Chemical Clouds using MODTRAN

3. Introduce a MODTRAN "*local*" chemical cloud option

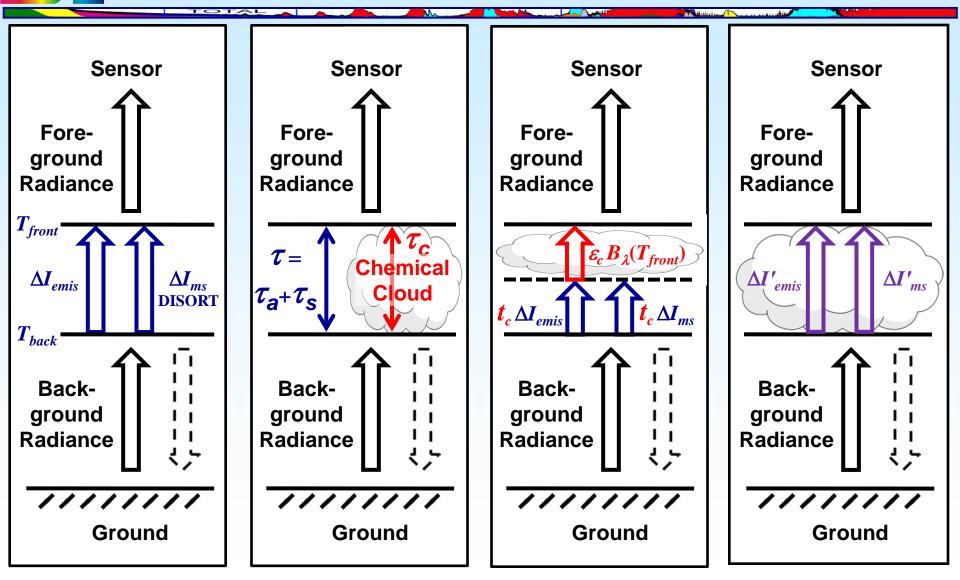
- Band model data for 100's of molecules
- User-friendly cloud specification
- Path geometry without chemical cloud
 - Eliminates refractive algorithm failures
 - Insures contrast signature paths match
- Radiative Transfer
 - Single scatter solar illumination paths attenuated by chemical cloud only for altitude levels containing cloud
 - Chemical cloud excluded from DISORT scattered radiance field calculation
 - Chemical cloud absorption effects on line-of-sight (LOS) radiance are modeled


Output of cloud-free, cloud + atmosphere and contrast spectral signatures
 24-26 August 2010



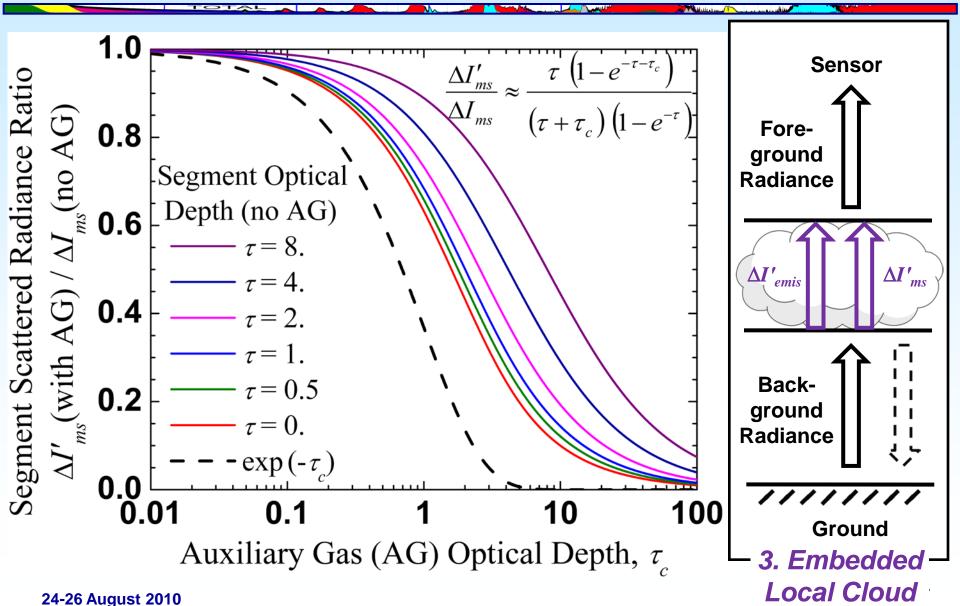

MODTRAN Local Chemical Cloud Option

User-friendly chemical cloud specification

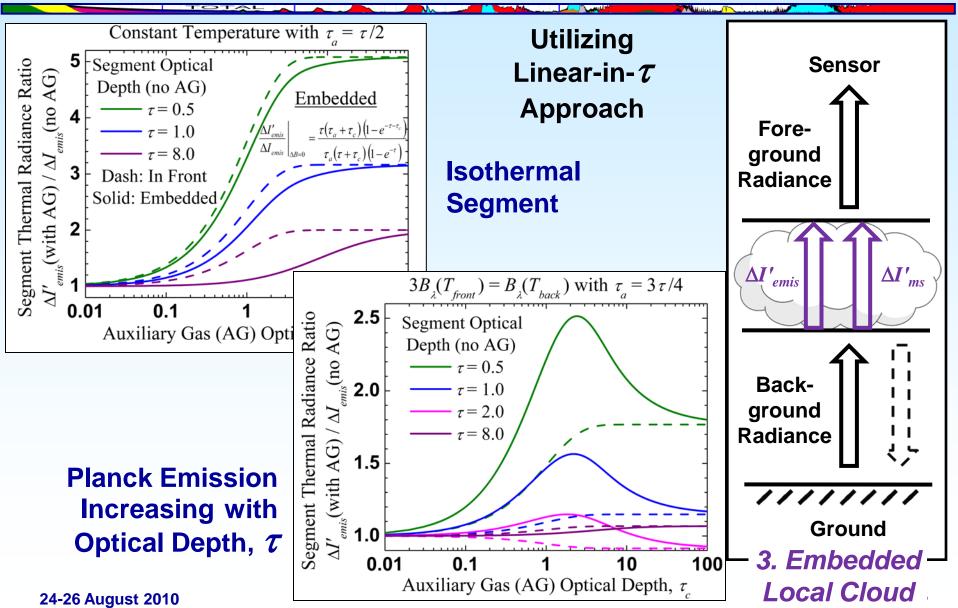


Single scatter solar illumination paths attenuated by chemical cloud only for altitude levels containing cloud

Single Layer Cloud Illustrations



No Cloud


1. External Cloud

3. Local Cloud

Chemical Cloud Effect on Segment Scattered Radiance

Chemical Cloud Effect on Segment Emitted Radiance

