Mapping Vegetation Across Spatial and Spectral Scales Using Multiple Endmember Spectral Mixture Analysis

Philip E. Dennison¹, Abigail N. Schaaf², Gregory K. Fryer¹, Keely L. Roth³, and Dar A. Roberts³

¹ University of Utah
² Forest Service Remote Sensing Applications Center
³ University of California Santa Barbara
Vegetation Mapping

- Past research has shown imaging spectroscopy is capable of mapping vegetation species and functional types at 4-30 m spatial resolutions.
- Little work on mapping vegetation using coarser resolution imaging spectrometer data.

Santa Barbara Front Range, 20 m AVIRIS

Dennison and Roberts, 2003
Mapping Vegetation in Montane Ecosystems

- Mapping vegetation in montane ecosystems can be particularly challenging
 - Spatial variation in elevation, slope, aspect, precipitation, and insolation produce spatial variation in vegetation type
 - Cloud cover, shorter summer season at higher elevation can limit remote sensing opportunities

Little Cottonwood Canyon, Wasatch Mtns
Mapping Vegetation in Montane Ecosystems

- Montane ecosystems are vulnerable to climate change
 - Favorable climates for individual species may move hundreds of meters upslope with a few degrees warming
 - Earlier snowmelt
 - Increased threat of insect outbreak (e.g. mountain pine beetle)
 - Increased summer evapotranspiration may not be offset by increased precipitation

- Vegetation mapping is essential for understanding impacts of climate change, human activity, and other disturbance on montane ecosystems

Lodgepole pine, Medicine Bow Mtns.
Mapping Vegetation in Montane Ecosystems

• How does vegetation mapping accuracy change with spatial and spectral resolution?
 – Can VNIR/SWIR imaging spectrometer data accurately map plant functional types at 60 m resolution in montane ecosystems?
AVIRIS Data

• Acquired August 5, 1998
• 20 m IFOV
• Covers 28 km by 11 km study area within the Wasatch Range east of the Salt Lake Valley
Wasatch Plant Functional Types

• 4 broad PFTs were defined based on leaf type and lifeform
 – broadleaf deciduous shrub (Gambel oak)
 – broadleaf deciduous tree (aspen)
 – needleleaf evergreen tree (white and subalpine fir, Douglas fir, and Engelmann spruce)
 – grass/herbaceous (meadows)
• A fifth rock/soil class was also mapped
Ground Reference Data

- Training and accuracy assessment polygons were derived from 1 m National Agriculture Imagery Program (NAIP) orthophotos
 - Polygons were created using image segmentation (eCognition)
 - Polygons were assigned a PFT identity in the field
 - Polygons were required to be at least 60 m by 60 m and at least 75% dominated by one PFT
 - 221 polygons were randomly partitioned into training and accuracy sets
Needleleaf evergreen tree polygon
Spatial and Spectral Resampling

- The 20 m AVIRIS radiance image was spatially resampled to 40 m and 60 m resolutions
- These 3 images were separately run through FLAASH to retrieve apparent surface reflectance
- AVIRIS reflectance images were also spectrally resampled to match the spectral response function of Landsat 5 TM
Image Classification

• Multiple Endmember Spectral Mixture Analysis
 – Models image spectra as a linear combination of endmembers
 – MESMA allows endmembers to vary on a per pixel basis
 – Endmembers were extracted from the training polygons
 – A 2-endmember model was used to classify the image
 • The best fit PFT (or rock/soil) endmember + shade
Endmember Selection

• Spectra extracted from polygons were run through an automated iterative endmember selection program.

• The program models a spectral library using 2 endmember MESMA and iteratively adds and subtracts endmembers to maximize the accuracy of the classification.

![AVIRIS Endmember Selection](image)
MESMA Classification

<table>
<thead>
<tr>
<th>Endmembers</th>
<th>20 m</th>
<th>40 m</th>
<th>60 m</th>
</tr>
</thead>
<tbody>
<tr>
<td>AVIRIS 20 m</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>AVIRIS 40 m</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>AVIRIS 60 m</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>TM 20 m</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>TM 40 m</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>TM 60 m</td>
<td></td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>
20m AVIRIS, 20m em

Accuracy 87.6%

Kappa .838
20m AVIRIS, 20m em

Accuracy 87.6%
Kappa .838

60m AVIRIS, 60m em

Accuracy 78.8%
Kappa .730
20m AVIRIS, 20m em

Accuracy 87.6%
Kappa .838

60m AVIRIS, 20m em

Accuracy 83.3%
Kappa .782
20m AVIRIS, 20m em

20m TM5, 20m em

Accuracy
87.6%

Kappa
.838

Accuracy
81.0%

Kappa
.754
Accuracy: 87.6% for 20m AVIRIS, 20m em
Accuracy: 74.5% for 60m TM5, 60m em
Kappa: 0.838 for 20m AVIRIS, 20m em
Kappa: 0.607 for 60m TM5, 60m em

Legend:
- Red: Broadleaf Deciduous Tree
- Blue: Needleleaf Evergreen Tree
- Green: Broadleaf Deciduous Shrub
- Yellow: Grass/Herbaceous
- Purple: Soil/Rock
20m AVIRIS, 20m em

60m TM5, 20m em

Accuracy
87.6%

Kappa
.838

Accuracy
78.6%

Kappa
.722

Legend:
- Broadleaf Deciduous Tree
- Needleleaf Evergreen Tree
- Broadleaf Deciduous Shrub
- Grass/Herbaceous
- Soil/Rock
Accuracy Comparison

<table>
<thead>
<tr>
<th>Spectral Resolution</th>
<th>Image Resolution</th>
<th>Em Resolution</th>
<th>Overall Accuracy</th>
<th>Kappa</th>
</tr>
</thead>
<tbody>
<tr>
<td>AVIRIS 20 20</td>
<td>20</td>
<td>20</td>
<td>87.6%</td>
<td>0.84</td>
</tr>
<tr>
<td>AVIRIS 40 20</td>
<td>20</td>
<td>20</td>
<td>86.1%</td>
<td>0.82</td>
</tr>
<tr>
<td>AVIRIS 60 20</td>
<td>20</td>
<td>20</td>
<td>83.3%</td>
<td>0.78</td>
</tr>
<tr>
<td>TM5 20 20</td>
<td>20</td>
<td>20</td>
<td>81.0%</td>
<td>0.75</td>
</tr>
<tr>
<td>TM5 40 20</td>
<td>20</td>
<td>20</td>
<td>81.0%</td>
<td>0.75</td>
</tr>
<tr>
<td>AVIRIS 60 60</td>
<td>60</td>
<td>60</td>
<td>78.8%</td>
<td>0.73</td>
</tr>
<tr>
<td>TM5 60 20</td>
<td>20</td>
<td>20</td>
<td>78.6%</td>
<td>0.72</td>
</tr>
<tr>
<td>AVIRIS 40 40</td>
<td>40</td>
<td>40</td>
<td>77.8%</td>
<td>0.72</td>
</tr>
<tr>
<td>TM5 40 40</td>
<td>40</td>
<td>40</td>
<td>76.5%</td>
<td>0.70</td>
</tr>
<tr>
<td>TM5 60 60</td>
<td>60</td>
<td>60</td>
<td>74.5%</td>
<td>0.61</td>
</tr>
</tbody>
</table>
User’s Accuracy (%)

<table>
<thead>
<tr>
<th>Spectral Res.</th>
<th>Image Res.</th>
<th>Em Res.</th>
<th>Broadleaf Deciduous Tree</th>
<th>Needleleaf Evergreen Tree</th>
<th>Broadleaf Deciduous Shrub</th>
<th>Grass/Herbaceous</th>
<th>Soil/Rock</th>
</tr>
</thead>
<tbody>
<tr>
<td>AVIRIS 20</td>
<td>20</td>
<td>20</td>
<td>75.6</td>
<td>99.1</td>
<td>87.1</td>
<td>80.2</td>
<td>98.2</td>
</tr>
<tr>
<td>AVIRIS 40</td>
<td>40</td>
<td>40</td>
<td>57.5</td>
<td>99.0</td>
<td>82.4</td>
<td>62.4</td>
<td>91.4</td>
</tr>
<tr>
<td>AVIRIS 40</td>
<td>40</td>
<td>20</td>
<td>76.9</td>
<td>97.8</td>
<td>84.4</td>
<td>78.1</td>
<td>95.8</td>
</tr>
<tr>
<td>AVIRIS 60</td>
<td>60</td>
<td>60</td>
<td>59.7</td>
<td>97.5</td>
<td>90.2</td>
<td>53.2</td>
<td>96.0</td>
</tr>
<tr>
<td>AVIRIS 60</td>
<td>60</td>
<td>20</td>
<td>72.1</td>
<td>98.3</td>
<td>82.0</td>
<td>78.1</td>
<td>91.1</td>
</tr>
<tr>
<td>TM5 20</td>
<td>20</td>
<td>20</td>
<td>58.3</td>
<td>98.6</td>
<td>84.3</td>
<td>46.1</td>
<td>97.5</td>
</tr>
<tr>
<td>TM5 40</td>
<td>40</td>
<td>40</td>
<td>65.5</td>
<td>99.6</td>
<td>86.7</td>
<td>44.3</td>
<td>91.5</td>
</tr>
<tr>
<td>TM5 40</td>
<td>40</td>
<td>20</td>
<td>61.0</td>
<td>98.2</td>
<td>84.4</td>
<td>46.6</td>
<td>95.3</td>
</tr>
<tr>
<td>TM5 60</td>
<td>60</td>
<td>60</td>
<td>74.6</td>
<td>89.5</td>
<td>84.4</td>
<td>41.2</td>
<td>87.6</td>
</tr>
<tr>
<td>TM5 60</td>
<td>60</td>
<td>20</td>
<td>55.7</td>
<td>97.5</td>
<td>82.6</td>
<td>45.5</td>
<td>91.1</td>
</tr>
</tbody>
</table>
Producer’s Accuracy (%)

<table>
<thead>
<tr>
<th>Spectral Res.</th>
<th>Image Res.</th>
<th>Em Res.</th>
<th>Broadleaf Deciduous Tree</th>
<th>Needleleaf Evergreen Tree</th>
<th>Broadleaf Deciduous Shrub</th>
<th>Grass/Herbaceous</th>
<th>Soil/Rock</th>
</tr>
</thead>
<tbody>
<tr>
<td>AVIRIS</td>
<td>20</td>
<td>20</td>
<td>91.0</td>
<td>83.0</td>
<td>97.1</td>
<td>85.6</td>
<td>80.6</td>
</tr>
<tr>
<td>AVIRIS</td>
<td>40</td>
<td>40</td>
<td>92.0</td>
<td>60.9</td>
<td>90.5</td>
<td>70.8</td>
<td>80.9</td>
</tr>
<tr>
<td>AVIRIS</td>
<td>40</td>
<td>20</td>
<td>92.0</td>
<td>78.8</td>
<td>97.9</td>
<td>84.3</td>
<td>78.3</td>
</tr>
<tr>
<td>AVIRIS</td>
<td>60</td>
<td>60</td>
<td>86.0</td>
<td>76.1</td>
<td>84.5</td>
<td>80.5</td>
<td>70.6</td>
</tr>
<tr>
<td>AVIRIS</td>
<td>60</td>
<td>20</td>
<td>88.0</td>
<td>72.9</td>
<td>96.5</td>
<td>78.1</td>
<td>80.4</td>
</tr>
<tr>
<td>TM5</td>
<td>20</td>
<td>20</td>
<td>93.9</td>
<td>82.1</td>
<td>93.4</td>
<td>27.0</td>
<td>78.2</td>
</tr>
<tr>
<td>TM5</td>
<td>40</td>
<td>40</td>
<td>84.8</td>
<td>74.7</td>
<td>80.0</td>
<td>56.2</td>
<td>77.9</td>
</tr>
<tr>
<td>TM5</td>
<td>40</td>
<td>20</td>
<td>96.4</td>
<td>77.9</td>
<td>94.8</td>
<td>30.3</td>
<td>78.3</td>
</tr>
<tr>
<td>TM5</td>
<td>60</td>
<td>60</td>
<td>88.0</td>
<td>60.7</td>
<td>80.3</td>
<td>85.4</td>
<td>76.5</td>
</tr>
<tr>
<td>TM5</td>
<td>60</td>
<td>20</td>
<td>88.0</td>
<td>74.8</td>
<td>93.7</td>
<td>24.4</td>
<td>80.4</td>
</tr>
</tbody>
</table>
Results

• Accuracy is higher at finer spatial and spectral resolutions
• Accuracy is higher when endmembers were selected from the 20 m image
 – Purer endmembers at 20 m
 – Spectral mixing at edges of polygons at coarser spatial resolution
• While finer resolution TM bands have similar overall accuracies to coarser resolution AVIRIS, accuracy can be very low for poorly discriminated classes
Limitations

• Polygons were required to have a minimum size and PFT dominance
 – Accuracy would be lower at coarser spatial resolutions if smaller, more heterogeneous polygons were included
• Our PFTs have broad structural and spectral differences
 – More spectrally similar PFTs will be more difficult to map
 – Analysis of additional spatial/spectral resampled datasets is underway for Wind River, Sierra Nevada, Santa Barbara
• Spatial average of 9 20 m pixels is not equivalent to 60 m HyspIRI point spread function
Conclusions

• Finer spatial and spectral resolutions increased PFT mapping accuracy
• High classification accuracies are possible at 60 m (for contiguous vegetation patches > 60 m)
• Finer spatial resolution airborne or spaceborne sensors may have a role creating training data for HyspIRI classification
Acknowledgements

• JPL: Rob Green, Sarah Lundeen
• Seminar students: Bob Benton, Annie Bryant, McKenzie Skiles, Jamie Turrin, Yuan Zhang
20m AVIRIS, 20m em

Accuracy 87.6%

Kappa .838

SWIR/NIR/red composite

- Broadleaf Deciduous Tree
- Needleleaf Evergreen Tree
- Broadleaf Deciduous Shrub
- Grass/Herbaceous
- Soil/Rock
20m AVIRIS, 20m em

Accuracy 87.6%

Kappa .838

40 m AVIRIS, 40 m em

Accuracy 77.8%

Kappa .716
20m AVIRIS, 20m em

Accuracy 87.6%
Kappa .838

60m AVIRIS, 60m em

Accuracy 78.8%
Kappa .730
20m AVIRIS, 20m em

Accuracy 87.6%
Kappa .838

40m AVIRIS, 20m em

Accuracy 86.1%
Kappa .818

Legend:
- Red: Broadleaf Deciduous Tree
- Blue: Needleleaf Evergreen Tree
- Green: Broadleaf Deciduous Shrub
- Yellow: Grass/Herbaceous
- Purple: Soil/Rock
20m AVIRIS, 20m em

Accuracy
87.6%

Kappa
.838

60m AVIRIS, 20m em

Accuracy
83.3%

Kappa
.782
20m AVIRIS, 20m em

Accuracy 87.6%

Kappa .838

20m TM5, 20m em

Accuracy 81.0%

Kappa .754
20m AVIRIS, 20m em

Accuracy 87.6%

Kappa .838

40m TM5, 40m em

Accuracy 76.5%

Kappa .701
20m AVIRIS, 20m em

Accuracy
87.6%

Kappa
.838

60m TM5, 60m em

Accuracy
68.6%

Kappa
.607
20m AVIRIS, 20m em

40m TM5, 20m em

Accuracy
87.6%

Accuracy
81.0%

Kappa
.838

Kappa
.753

Legend:
- Red: Broadleaf Deciduous Tree
- Blue: Needleleaf Evergreen Tree
- Green: Broadleaf Deciduous Shrub
- Yellow: Grass/Herbaceous
- Pink: Soil/Rock
Broadleaf deciduous shrub
Training polygon

NAIP 1 m

20 m

40 m

60 m
Broadleaf deciduous tree polygon