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Turbulent Energy Cascade

* Energy is input to the climate system on large spatial
scales and “cascades” through a sequence of turbulent

processes to microscales.

 Satellite remote sensing offers a unique perspective of
these processes: prime example is mesoscale oceanic
variability.

o “Big whorls have little whorls that feed on their

velocity, and little whorls have smaller whorls and so
on to viscosity.” - L.F. Richardson.
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Scales of atmospheric variability
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ScaLes. Figure 1. Scale definitions and different processes with
characteristic time and horizontal scales. (Adapted from Orlan-
ski, 1975, and Oke, 1987.)
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Scales of ocean variability

Sub-mesoscale
variability is not
limited to shelf
and estuarine
Processes.

From Robinson, I. S. (2004),
Measuring the Oceans from
Space. The principles and
methods of satellite oceanography,
515 pp., Springer Verlag - Praxis
Publishing, Chichester, UK.
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SST Images reveal mesoscale
variability.
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MOD021KM.A2008244.1700.005.2008245012940.hdf
Terra MODIS Truecolor Scene
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How Is progress made?

* In recent decades, progress in oceanic and
atmospheric science has often followed the
measurements of improved instrumentation:.

— Swallow floats & satellite images of oceanic
mesoscale features.

— Radars, aircraft and satellite measurements of
cloud processes.

« But now, modeling has moved beyond
measurement capabilities.
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High resolution simulations

From below From above

Domain dimensions: 25x25 km
Blue: a density interface surface near the ocean surface
Orange: buoyant plume

Courtesy: Tamay Ozgokmen, RSMAS - MPO
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Simulations of ocean mixing

Domain dimensions: 10x10 km
A density interface surface
intersecting the ocean surface.

Courtesy: Tamay Ozgokmen,
RSMAS - MPO
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Modeled SST - Florida Keys

Grid size: 700m

Courtesy:
Dr Laurent Cherubin,
RSMAS-MPO
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Nested Modeled SST - Belize
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Nested grid resolutions: 2km — 690m — 230m
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How to measure sub-mesoscale
variability?

Ship-based: cannot provide synoptic sampling, even using multiple ships;
traditional instruments are good for vertical sections, but not for horizontal.

Tracers: difficult to capture by ship tracking; airborne laser tracking is
promising and under development. Overall, total tracer amount is too small
and too short-lived to provide insight.

Gliders: these are in vogue, but expensive (so not too many), and have
major post-processing challenges due to aliasing by time along the path.

Drifters: feasible, but need O(100) in a concentrated deployment, which is
large enough to create environmental concerns.

VHF radar: good, but limited to coastal zones.
High resolution satellite imagers (SARs, VIS, IR) — a very feasible option.

2010 HysplIRI Science Workshop 14

24-26 August 2010 Pasadena



Essential Climate Variables
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GCOS Essential Climate Variables

The Essential Climate Variables (ECVs: ) are required to support the work of the UNFCCC and the IPCC. All ECVs are
technically and ecenomically feasible for systematic observation. It is these variables for which international exchange is
required for both current and historical observations. Additional variables required for research purposes are not included in this
table. It is emphasized that the ordering within the table is simply for convenience and is not an indicator of relative priority
Currently, there are 44 ECVs plus soil moisture recognized as an emerging ECY

Domain Essential Climate Variables

Surface: Air temperature. Precipitation, Air pressure, Surface radiation budget

YWind speed and direction, VWater vapour.

Atmospheric Upper-air: Earth radiation budget (including solar irradiance), Upper-air
{over land, sea temperature (including MSU radiances), Wind speed and direction
and ice) YWater vapour. Cloud properties

Composition: Carbon dioxide, Methane, Qzone, Other long-lived greenhouse
gases[1]. Aerosol properties

Surface: Sea-surface temperature. Sea-surface salinity, Sea level, Sea state
Sea ice, Current, Ocean colour (for biological activity). Carbon dioxide

partial pressure

QOceanic
Sub-surface: Temperature. Salinity, Current. Mutrients, Carbon. Ocean tracers
Phytoplankton
River discharge. Water use. Ground water. Lake levels, Snow cover, Glaciers and ice
2 caps., Permafrost and seasonally-frozen ground, Albedo, Land cover (includin
Terrestrial[2] B J : e, S

vegetation type). Fraction of absorbed photosynthetically active radiation (fAPAR)
Leaf area index (LAl), Biomass, Fire disturbance, Soil moisture[3].
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Essential Climate Variables

The Essential Climate Variables (ECVs: ) are required to support the work of the UNFCCC and the [PCC. All ECVs are
technically and economically feasible for systematic observation. It i1s these vanables for which international exchange is
required for both current and historical observations. Additional vanables required for research purposes are not included in this
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GCOS Essential Climate Variables

The Essential Climate Variables (ECVs: ) are required to supr o o the work of the UNFCCC and the IPCC. All ECVs are
technically and ecenomically feasible for systematic observation. It is these variables for which international exchange is
required for both current and historical observations. Additional variables required for research purposes are not included in this
table. It is emphasized that the ordering within the table is simply for convenience and is not an indicator of relative priority

Currently, there are 44 ECVs plus soil moisture recognized as an emerging ECY

Domain Essential Climate Variables

Surface: Air temperature, Precipitation, Air pressure, Surface radiation

YWind speed and direction, VWater vapour.

Earth radiation budget (including
temperature (including MSU ra-ianc-_;

solar _irZaance), Upper-air

|over 1ana, sea vWind speed and direction

and ice) \Water vapour. Cloud properties
Composition: Carbon dioxide, Methane, Qzone, Other long-lived greenhouse
gases[1]. Aerosol properties
Surface: Sea-surface temperature. Sea-surface salinity, Sea level, Sea state
Sea ice, Current, Ocean colour (for bic'= jical activity). Carbon dioxide
partial pressure
Oceanic
Sub-surface: Temperature. Salinity, Current. Mutrients, Carbon. Ocean w.-ers

Phytoplankton

Ocean colour (for

Hiver L'IiSChE"QE! Water use. Ground water, Lane isvein, i Luvel, Jlacisis anu us
caps, Permafrost and seasonally-frozen ground. Albedo, Land cover (including
vegetation type). Fraction of absorbed photosynthetically active radiation (fAPAR)
Leaf area index (LAl), Biomass, Fire disturbance, Soil moisture[3].

Terrestrial[2]
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Satellite-derived CDRs

National Academy of Sciences Report (NRC, 2000): “a
data set designed to enable study and assessment of long-
term climate change, with ‘long-term’ meaning year-to-
year and decade-to-decade change. Climate research
often involves the detection of small changes against a
background of intense, short-term variations.”

“Calibration and validation should be considered as a
process that encompasses the entire system, from the
sensor performance to the derivation of the data products.
The process can be considered to consist of five steps:
— Instrument characterization,

— sensor calibration,

— calibration verification,

— data quality assessment, and

— data product validation.”
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Desired SST CDR uncertainties

 The useful application of all satellite-derived
variables depends on a confident determination
of uncertainties.

* CDRs of SSTs require most stringent knowledge
of the uncertainties:

— Target accuracies: 0.1K over large areas, stability

0.04K/decade - ohring et al. (2005) Satellite Instrument

Calibration for Measuring Global Climate Change: Report of a Workshop.
Bulletin of the American Meteorological Society 86:1303-1313
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Sources of uncertainty in satellite-derived SSTs

Skin/Subskin SST Retrievals in Satellite Coordinates

Instrument Error

Calibration

Simulation Errors Sampling Errors
m Classification Errors

SST Products Derived from Skin/Subskin Retrievals
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Many sources of
retrieval algorithm errors
(green box) and
geophysical and model
errors (orange box) are
dependent on the spatial
resolution of the satellite
data.
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SST retrievals: identifying clouds

Records that passed

initial tests
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SST retrievals: identifying clouds

Many threshold
values are scale
dependent, and s T
dependent on
types of clouds

present, and

TSma - T2 min
= 0.7

therefore
dependent on
time of day.
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Why worry about sub-pixel variability?

Figure 7.10. Schematic of the visible waveband view reflected from a region ol partially
cloudy sea. (a) As seen by a very fine resolution detector, with a coarse grid of 12 x 12 cells
superimposed. (b) As it appears in the coarse pixels image.

Mixture modeling of radiances should give sub-pixel information:

From Robinson, I. S.

C
R= Z r.a. +e (2004), Measuring the
S Oceans from Space. The

=1 principles and methods of
UNIVERSITY OF MIAMIL Satel I ite oceanog raphy’
ROSENSTIEL 515 pp., Springer Verlag -
SCHOOL of MARINE & . . . .
ATMOSPHERIC SCIENCE 2010 HyspIRI Science Workshop Praxis Publishing, 22
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Beware......
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Beware of per-pixel characterization of land cover

J. R. G. TOWNSHENDT#*, C. HUANG, S. N. V. KALLURIL
R. S. DEFRIES, S. LIANG

2181 LeFrak Hall, Department of Geography, University of Maryland. College
Park, M D 20742, USA; e-mail: jt39@umail.umd.edu

and K. YANG
Failure to account for the Science Systems and Applications, Inc., Code 922, NASA-GSFC, Greenbelt

MTF (Modulation Transfer b ARs
Function) can lead to >10%
errors in classifications
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From Barnes, W. L., T. S. Pagano, and V. V. Salomonson (1998), Prelaunch characteristics of the moderate resolution imaging

spectroradiometer (MODIS) on EOS-AM1, IEEE Transactions on Geoscience and Remote Sensing, 36, 1088-1110.
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Pixel spatial response function

= Boresight
Contours of il .
actual directional . Nominal
response (dark [~ field of view
is 100%) (dashed)

Figure 4.2. Example of a typical actual sensor 2-D response function for a sensor having a
nominally square.
« Instantaneous spatial responses of detectors are not uniform.

» This compounds the MTF effect and increases errors in retrievals at
the pixel scale.

From Robinson, I. S. (2004), Measuring the Oceans from Space. The principles
and methods of satellite oceanography, 515 pp., Springer Verlag - Praxis
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HyspIRI spatial resolution
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Summary

Natural variability covers a very wide range of scales, and is not truncated
at the ~1km resolution of conventional oceanic and atmospheric imagers.

High-resolution HyspIRI data over the oceans will provide new insight into
oceanic and atmospheric processes relevant to climate studies.

Many CDRs are derived from moderate-resolution data; high-resolution
HyspIRI data can provide unique data with which to test, improve, and
establish the limitations on accuracies imposed by sub-pixel variability.
This would guide reprocessing algorithms to improve the accuracy of
CDRs.

Improved CDRs provide a better basis for decision-makers to make hard
choices... and to justify them.
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One-liner....

Global HyspIRI mission can make a unique
contribution to the climate monitoring and
climate research communities.
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One-liner....

Global HyspIRI mission can make a unique contribution to the climate monitoring and climate research communities.
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